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GAUGE-FIXING CONSTANT SCALAR CURVATURE
EQUATIONS ON RULED MANIFOLDS AND THE

FUTAKI INVARIANTS

YING-JI HONG

Abstract
In this article we introduce and prove the solvability of the gauge-fixing con-
stant scalar curvature equations on ruled Kaehler manifolds. We prove that
when some lifting conditions for holomorphic vector fields on the base mani-
fold are satisfied the solutions for the gauge-fixing constant scalar curvature
equations are actually solutions for the constant scalar curvature equations
provided the corresponding Futaki invariants vanish.

In this article we will prove that the vanishing of certain natural Fu-
taki invariants would imply the existence results for Kaehler metrics on
ruled manifolds with constant scalar curvature. This work extends that
of [10, 11] to the case where the base m-dimensional compact Kaehler
manifold (M : ωM ) with constant scalar curvature may admit nontrivial
holomorphic vector fields while the holomorphic vector bundle E over
M with Einstein-Hermitian connection may not be simple.
In order to state our results properly we recall some facts about

the structure of the groups of holomorphic automorphisms of compact
Kaehler manifolds with constant scalar curvature. More background
material can be found in [15].

Theorem 0. Assume that (M : ωM ) is an m-dimensional com-
pact Kaehler manifold with constant scalar curvature. Here ωM is the
Kaehler form of M . Let h(M) denote the complex Lie algebra of holo-
morphic vector fields on M . Then we have the following direct sum
decomposition (in the Lie algebra sense) of the Lie algebra h(M):

h(M) = ho(M)⊕ c(M)
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in which

ho(M) ≡
{
Z ∈ h(M) : iZωM = ∂f

for some smooth C-valued function f ∈ Γ(M : C) on M
}

and
c(M) ≡

{
Z ∈ h(M) : iZωM ∈ H(0:1)(M : C)

}
.

Note that the complex Lie algebra c(M) is commutative and is a Lie
subalgebra of the Lie algebra of the isometry group of (M : ωM ). Also,
ho(M) is the complexification of the intersection k(M :ωM ) of ho(M) with
the Lie algebra of the isometry group of (M : ωM ).

Remark. Elements of ho(M) can be characterized intrinsically
as the holomorphic vector fields on M with nonempty zero loci. This
characterization of ho is valid for any compact Kaehler manifold (not
necessarily with constant scalar curvature) and is due to Andre Lich-
nerowicz.

Remark. Note that the Lie algebra of smooth vector fields on M
preserving the complex structure ofM is isomorphic to h(M) (in the Lie
algebra sense). This interpretation of h(M) is already used implicitly in
the statement of Theorem 0 and will be used in the rest of this article.

Let Aut (M) denote the group of holomorphic automorphisms of M
and G the connected component, containing the identity map of M , of
the Lie subgroup of Aut (M) generated by ho(M). Let K(M :ωM ) denote
the compact connected component, containing the identity map of M ,
of the Lie subgroup of Aut (M) generated by the intersection k(M :ωM ) of
ho(M) with the Lie algebra of the isometry group of (M : ωM ) so that
G is the complexification of K(M :ωM ).
Assume that π : E −→M is a holomorphic vector bundle of rank n

overM with Einstein-Hermitian metric HE . Let A denote the Einstein-
Hermitian connection on E induced byHE . Let P(E) denote the projec-
tivization of E overM . Then P(E) is a compact complex manifold with
(−1+m+n) dimensions. Let L be the universal line bundle over P(E).
Then the Einstein-Hermitian metric HE induces a Hermitian metric
HL∗ on the dual L∗ of L over P(E). Let AL∗ denote the Hermitian
connection on L∗ induced by HL∗ . Thus there is a representative

i · FAL∗

2π
=

i

2π
· ∂∂ logHL∗ = − i

2π
· ∂∂ logHL
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of the Euler class e(L∗) of L∗ on P(E) induced by the Hermitian con-
nection AL∗ . Here HL is the Hermitian metric on L over P(E) induced
by the Einstein-Hermitian metric HE on E over M . Note that the rep-
resentative

i·FAL∗
2π of e(L∗) on P(E) induces the Fubini-Study metric on

each fiber P(Cn) of π̌ : P(E) −→M . Thus, for each k ∈ N large enough,

i · FAL∗

2π
+ k · π̌∗ωM

is a Kaehler form on P(E).
[‡]: Suppose that, for each k ∈ N large enough, there exists a corre-

sponding Kaehler form on P(E), lying in the Kaehler class[
i · FAL∗

2π
+ k · π̌∗ωM

]
,

carrying constant scalar curvature. Then, for each k ∈ N large enough,
the corresponding Futaki character must be zero.
Let Aut (P(E)) denote the group of holomorphic automorphisms of

P(E). Let Aut (E) denote the group of holomorphic automorphisms of
E over M . Let GE denote the natural image of Aut (E) in Aut (P(E))
preserving the holomorphic projection map π̌ : P(E) −→ M . Then we
have

GE =
Aut (E)

C∗ .

Let gE denote the Lie algebra of GE . Our Theorem A shows that
the converse of [‡] is true when the elements of ho(M) can be lifted to
holomorphic vector fields on P(E) preserving the holomorphic projection
map π̌ : P(E) −→M .

Theorem A. Assume that the elements of ho(M) can be lifted to
holomorphic vector fields on P(E) preserving the holomorphic projection
map

π̌ : P(E) −→M.

Suppose that, for each k ∈ N large enough, the corresponding Futaki
character associated with

gE + (the lifted action of ) ho(M)

and the Kaehler class
[
i·FAL∗

2π + k · π̌∗ωM

]
on P(E) is zero. Then, for

each k ∈ N large enough, there exists a corresponding Kaehler form on
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P(E), lying in the Kaehler class[
i · FAL∗

2π
+ k · π̌∗ωM

]
,

carrying constant scalar curvature.

Corollary A. Assume that the holomorphic vector bundle E with
Einstein-Hermitian connection A over M is simple while the elements
of ho(M) can be lifted to holomorphic vector fields on P(E) preserving
the holomorphic projection map

π̌ : P(E) −→M.

Suppose that, for each k ∈ N large enough, the corresponding Futaki
character associated with (the lifted action of ) ho(M) and the Kaehler
class

[
i·FAL∗

2π + k · π̌∗ωM

]
on P(E) is zero. Then, for each k ∈ N large

enough, there exists a corresponding Kaehler form on P(E), lying in the
Kaehler class [

i · FAL∗

2π
+ k · π̌∗ωM

]
,

carrying constant scalar curvature.

Corollary B. Assume that the compact Kaehler manifold (M : ωM )
with constant scalar curvature does not admit nontrivial infinitesimal
deformation of Kaehler forms in the Kaehler class [ωM ] on M with
constant scalar curvature. Suppose that, for each k ∈ N large enough,
the corresponding Futaki character associated with gE and the Kaehler
class

[
i·FAL∗

2π + k · π̌∗ωM

]
on P(E) is zero. Then, for each k ∈ N large

enough, there exists a corresponding Kaehler form on P(E), lying in the
Kaehler class [

i · FAL∗

2π
+ k · π̌∗ωM

]
,

carrying constant scalar curvature.

In view of Theorem 0 it might seem necessary to add the following
invariance assumption of

i·FAL∗
2π to Theorem A:

i·FAL∗
2π is invariant under

the lifted action of k(M :ωM ) on P(E). Our Theorem B shows that it
is unnecessary to make such extra assumption in Theorem A because
the invariance of

i·FAL∗
2π can be inferred directly from the vanishing of

Futaki invariants. In particular, in Corollary A,
i·FAL∗

2π is automatically
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invariant under the lifted action of k(M :ωM ) on P(E) because there is
only one possible lifting of ho(M).

Theorem B. Assume that the elements of ho(M) can be lifted to
holomorphic vector fields on P(E) preserving the holomorphic projection
map

π̌ : P(E) −→M.

Suppose that, for each k ∈ N large enough, the corresponding Futaki
invariants associated with

gE + (the lifted action of ) k(M :ωM )

and the Kaehler class
[
i·FAL∗

2π + k · π̌∗ωM

]
on P(E) are zero. Then the

lifting of the intersection k(M :ωM ) of ho(M) with the Lie algebra of the
isometry group of (M : ωM ) can be properly rearranged such that

i · FAL∗

2π

is invariant under the rearranged lifted action of k(M :ωM ) on P(E).

Let kE denote the maximal compact Lie subalgebra of gE . Actually,
in Theorem B, the rearranged lifting of k(M :ωM ) is, modulo
Hom

(
k(M :ωM ) : kE

)
, uniquely determined. Precise version (Theorem II.B)

of this result can be found in Section II.
We will prove Theorem A through solving the “gauge-fixing constant

scalar curvature equation” depending on k large enough. (The gauge-
fixing constant scalar curvature equation and its solvability, when the
parameter k is sufficiently large, will be introduced in Section V.) With
the solvability of the gauge-fixing constant scalar curvature equation we
will then show that the solvability of constant scalar curvature equa-
tion can be inferred from the vanishing of Futaki invariants. Actually,
by incorporating the vanishing of the corresponding Futaki invariants,
we will show that the solutions to the gauge-fixing constant scalar cur-
vature equation are actually solutions to the constant scalar curvature
equation, when the parameter k is sufficiently large, in Section VI.

I. Futaki invariants

Here we summarize some basic facts about the Futaki Invariants.
The reader can find more background material in [7, 15].
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Theorem I.A. Assume that (B : ωB) is a b-dimensional compact
Kaehler manifold (not necessarily with constant scalar curvature). Let
h(B) denote the complex Lie algebra of holomorphic vector fields on B
and [ωB] the Kaehler class associated with the Kaehler form ωB on B.
Let c[ωB ] ∈ R denote the constant associated with [ωB] satisfying the
following equality:

c[ωB ] ·
∫
B

ωm

m!
=
∫
B

i · ρω
2π

∧ ω(−1+m)

(−1 +m)! ∀ω ∈ [ωB] .

Here ρω is the curvature form of the holomorphic line bundle ∧bT (1:0)(B)
on B (the highest degree wedge product of the holomorphic tangent bun-
dle T (1:0)(B) of B) defined by ω ∈ [ωB]. Let

F : h(B)× [ωB] −→ C

be defined as follows:

F(Z : ω) ≡
∫
B
ψ(Z:ω) ·

(
−c[ωB ] ·

ωm

m!
+
i · ρω
2π

∧ ω(−1+m)

(−1 +m)!

)
∀(Z : ω) ∈ h(B)× [ωB]

in which the smooth function ψ(Z:ω) ∈ Γ (B : C) on B satisfies

LZω = i∂∂ ψ(Z:ω).

Then F only depends on h(B): F(Z : •) is constant on [ωB] for each
Z ∈ h(B). Besides we have

F([Z :W ] : ω) = 0 ∀(Z :W : ω) ∈ h(B)× h(B)× [ωB] .

F is called the Futaki character associated with (h(B) : [ωB]).

It is obvious that when B carries constant scalar curvature the Fu-
taki character associated with h(B) and (B : ωB) must be zero. We will
apply Theorem I.A to the compact complex manifold P(E).

II. Lifting of the elements of ho(M)

In this section we discuss the lifting of the elements of ho(M) to
holomorphic vector fields on P(E) preserving the holomorphic projection
map

π̌ : P(E) −→M.
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We will consider the Real aspect of ho(M): Given a holomorphic vector
field Z on M with nonempty zero locus we will consider the lifting of
the corresponding smooth vector field XZ onM preserving the complex
structure of M . Here the smooth vector field XZ on M is defined as
follows:

XZ ≡ Z + Z.
Our immediate purpose is to lift XZ to a smooth vector field on E
preserving the vector bundle structure and the holomorphic structure
of E over M .
Given the connection A on E there is a convenient lifting of XZ

(induced by the distribution of horizontal spaces on E specified by A)
to a smooth vector field on E preserving the vector bundle structure of
E overM . But this lifting does not necessarily preserve the holomorphic
structure of E overM . Thus we add a smooth section s of Hom (E : E)
over M to this lifting. Let FA denote the curvature form of E induced
by the connection A. Then it is easy to see that this modified lifting of
XZ preserves the holomorphic structure of E over M if and only if

−∂As+ FA (Z : ) = 0.

In particular we infer that XZ can be lifted to a smooth vector field on
E preserving the vector bundle structure and the holomorphic structure
of E over M if and only if

0 = [FA (Z : )] ∈ H1
∂A
(M : Hom (E : E)).

Thus we have the following:

Theorem II.A. Assume that E is a holomorphic vector bundle with
Hermitian connection A over a compact Kaehler manifold (M : ωM ).
Let FA denote the curvature form of E over M induced by the connection
A. Then for any holomorphic vector field Z on M we have

0 = [FA (Z : )] ∈ H1
∂A
(M : Hom (E : E))

if and only if the corresponding smooth vector field XZ = Z + Z on
M , preserving the complex structure of M , can be lifted to a smooth
vector field on P(E) preserving both the complex structure of P(E) and
the holomorphic projection map

π̌ : P(E) −→M.
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Remark. Theorem II.A is valid for any compact Kaehler manifold
(not necessarily with constant scalar curvature). Note that for any
holomorphic vector field Z on M the equation

0 = [FA (Z : )] ∈ H1
∂A
(M : Hom (E : E))

only depends on the holomorphic structure of E over M . It does not
depend on the Hermitian connection A on E over M .

Now suppose further that the smooth vector field XZ onM actually
preserves the Kaehler form ωM onM . Since 0 = [FA (Z : )] ∈ H1

∂A
(M :

Hom (E : E)) there certainly exists a lifting of XZ to a smooth vector
field X̌Z on P(E) preserving both the complex structure of P(E) and
the holomorphic projection map π̌ : P(E) −→M .

Theorem II.B. Suppose that the Futaki invariant associated with
the lifting X̌Z (of XZ) and the Kaehler class

[
i·FAL∗

2π + k · π̌∗ωM

]
on

P(E) vanishes for any sufficiently large k ∈ N. Then there exists a lifting
of XZ , preserving the holomorphic projection map π̌ : P(E) −→M , to a
smooth vector field X̌Z on P(E) preserving both

i·FAL∗
2π and the complex

structure of P(E). Note that the smooth vector field X̌Z on P(E) is,
modulo the compact Lie subalgebra kE of gE, uniquely determined.

It is obvious that the converse of Theorem II.B is true. Proving
Theorem II.B requires more knowledge and will not be given in this
section. The reader can find it in Appendix II.

III. Splitting of holomorphic vector bundles with
Einstein-Hermitian connections over compact Kaehler

manifolds

In this section we will consider the splitting of the holomorphic vec-
tor bundle E with Einstein-Hermitian connection A over a compact
Kaehler manifold M . Since the assumption that (M : ωM ) carries con-
stant scalar curvature will not be used the results of this section are
valid for any compact Kaehler manifold.
We begin with some basic facts about the structure of holomor-

phic vector bundles with Einstein-Hermitian connections over compact
Kaehler manifolds. The reader can find more background material in
[12].
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Note that E can be expressed as the direct sum of certain simple
holomorphic vector bundles Eθ over M

E = ⊕θEθ.

Besides the Einstein-Hermitian connection A on E can be expressed as

A = ⊕θAθ

with each connection Aθ on Eθ being Einstein-Hermitian. Since any
nontrivial holomorphic map between slope-stable holomorphic vector
bundles over a compact Kaehler manifold must be an isomorphism it
is easy to understand the structure of Aut(E) completely through the
following examples:

Example I. When all the bundles Eθ are lying in the same isomor-
phism class of a slope-stable holomorphic vector bundle Eo over M we
have

Aut (E) = GL
(

n

rankEo
: C
)
.

Example II. Let d denote the number of the isomorphism classes
defined by these slope-stable holomorphic vector bundles Eθ over M .
When the isomorphism classes defined by these bundles Eθ over M are
all distinct we have

Aut (E) = C
∗ × · · · × C

∗

in which there are d copies of the multiplicative group

C
∗ = {z ∈ C : z �= 0} .

Actually let d denote the number of the isomorphism classes defined
by these slope-stable holomorphic vector bundles Eθ over M . Then
Aut (E) is the product of d complex general linear groups. Each com-
plex linear group is acting on the direct sum of those slope-stable holo-
morphic vector bundles Eθ overM lying in the same isomorphism class.

IV. Some basic facts and kernel identification

Since the restriction of
i·FAL∗

2π on each fiber P (Cn) of π̌ : P(E) −→
M is simply the Fubini-Study Kaehler form there is a well-defined
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smooth vector bundle W over M whose fiber (vector space over R)
Wz over z ∈ M is the eigenspace of the lowest nonzero eigenvalue
of the (Fubini-Study) Laplacian on the fiber P (Cn) of P(E) over M .
Note that the eigenspace of the lowest nonzero eigenvalue 4πn of the
(Fubini-Study) Laplacian on P (Cn) simply consists of the quotients of
traceless Hermitian quadratic functions on C

n by the usual Hermitian
metric

∑
δαβ · wα · wβ on C

n. It is well-known in Kaehler geometry
that this eigenspace represents the tangent space at the Hermitian met-
ric
∑
δαβ · wα · wβ of the moduli space of Einstein-Kaehler metrics on

P (Cn):
sl(n : C)
su(n)

.

On the other hand integration along the fibers of π̌ : P(E) −→ M
maps a smooth function on P(E) onto a smooth function on M . Let
Γ (M :W ) denote the space of smooth sections of W over M . Then for
each smooth R-valued function f ∈ Γ (P(E) : R) on P(E) we have the
following corresponding decomposition:

f = σ̂(f)⊕ σ(f)⊕ σ̃(f)

in which (σ̂(f) : σ(f)) ∈ Γ (M : R)⊕ Γ (M :W ) while the restriction of
σ̃(f) on each fiber P (Cn) of π̌ : P(E) −→ M over z ∈ M is orthogonal
to both the space Wz and the space of constant functions on that fiber
(over z ∈M).
Let Γo (P (Cn) : R) denote the space of smooth R-valued functions f

on P (Cn) satisfying

∫
P(Cn)

f · ω
(−1+n)
F-S

(−1 + n)! = 0.

Now we introduce a basic result about a special kind of quadratic com-
binations of elements of the eigenspace of the lowest nonzero eigenvalue
(4πn) of the Fubini-Study Laplacian ∆F-S on P (Cn).

Proposition IV.A. Assume that C
n and P (Cn) are respectively

endowed with the standard Hermitian metric HCn =
∑
δαβ · wα · wβ

on C
n and the Fubini-Study Kaehler form ωF-S = − i

2π∂∂ logHCn on
P (Cn). We define a symmetric quadratic operation Q on the eigenspace
of the lowest nonzero eigenvalue (4πn) of the Fubini-Study Laplacian
∆F-S on P (Cn) as follows:
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Given X ∈ sl(n : C) let fX ∈ Γo(P(Cn) : R) denote the smooth R-valued
function on P (Cn) satisfying

LXωF-S = i∂∂fX .

Then we have fX = 0 when X ∈ su(n). Besides we always have

∆F-SfX = 4πn · fX .

We define Q (fX : fX) through the following equality:

Q (fX : fX) · ω
(−1+n)
F-S

(−1 + n)! = i∂∂fX ∧ i∂∂fX ∧
ω

(−3+n)
F-S

(−3 + n)! .

Then for each element fX of the eigenspace of the lowest nonzero
eigenvalue (4πn) of the Fubini-Study Laplacian ∆F-S on P (Cn) the fol-
lowing smooth function:

− (2π · n · fX) · (2π · n · fX) +Q (fX : fX)

on P (Cn) is orthogonal to the eigenspace of the lowest nonzero eigen-
value (4πn) of the Fubini-Study Laplacian ∆F-S on P (Cn).

This result has been proved in [11] through direct computation. Ac-
tually it can be inferred from the vanishing of the Futaki character
associated with sl(n : C) and the Fubini-Study Kaehler class [ωF-S] on
P (Cn).

Proof of Proposition IV.A. Let ρωF-S denote the curvature form of
the dual of the canonical line bundle of P (Cn) defined by ωF-S. Then
we have

i · ρωF-S

2π
=
i · ∂∂ log detHF-S

2π
= n · ωF-S.

Here HF-S is the Einstein-Kaehler metric on P (Cn) induced by ωF-S.
Let

ωF-S:t ≡ ωF-S + t · i∂∂fX ∀t ∈ R.

Then for each t ∈ R with |t| ≥ 0 being small ωF-S:t is a Kaehler form on
P (Cn) lying in the Fubini-Study Kaehler class [ωF-S]. We define a sym-
metric quadratic operation Q on the eigenspace of the lowest nonzero
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eigenvalue (4πn) of the Fubini-Study Laplacian ∆F-S on P (Cn) through
the following equality:

Q (fX : fX) · ω
(−1+n)
F-S

(−1 + n)!

=
d

dt
◦ d
dt

(
−n · (−1 + n) · ω

(−1+n)
F-S:t

(−1 + n)! +
i · ρωF-S:t

2π
∧ ω

(−2+n)
F-S:t

(−2 + n)!

)∣∣∣∣∣
t=0

.

It can be checked readily that

Q (fX : fX) · ω
(−1+n)
F-S

(−1 + n)!

=
i

2π
∂∂

(
−∆F-SfX

2
· ∆F-SfX

2
+Q (fX : fX)

)
∧ ω

(−2+n)
F-S

(−2 + n)!
and thence

Q (fX : fX) =∆F-S

4π

(
−∆F-SfX

2
· ∆F-SfX

2
+Q (fX : fX)

)
=
∆F-S

4π
[−(2πn · fX) · (2πn · fX) +Q (fX : fX)] .

Now for any Y ∈ sl(n : C) the Futaki invariant associated with Y
and the Fubini-Study Kaehler class [ωF-S] on P (Cn) vanishes. Thus we
have

0 = F (Y : ωF-S:t)

=
∫

P(Cn)

(
−LY logHCn

2π
+ t · LY fX

)

·
(
−n · (−1 + n) · ω

(−1+n)
F-S:t

(−1 + n)! +
i · ρωF-S:t

2π
∧ ω

(−2+n)
F-S:t

(−2 + n)!

)
for t ∈ R with |t| ≥ 0 being small. Let us now consider the equality

0 =
d

dt
◦ d
dt

F (Y : ωF-S:t)
∣∣∣∣
t=0

.

Since X ∈ sl(n : C) preserves the Einstein-Kaehler condition (equiva-
lently the constant scalar curvature condition) on P (Cn):

LX

(
−n · (−1 + n) · ω

(−1+n)
F-S

(−1 + n)! +
i · ρωF-S

2π
∧ ω

(−2+n)
F-S

(−2 + n)!

)
= 0
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and
LXωF-S = i∂∂fX

we have

d

dt

(
−n · (−1 + n) · ω

(−1+n)
F-S:t

(−1 + n)! +
i · ρωF-S:t

2π
∧ ω

(−2+n)
F-S:t

(−2 + n)!

)∣∣∣∣∣
t=0

= 0.

Thus

0 =
d

dt
◦ d
dt

F (Y : ωF-S:t)
∣∣∣∣
t=0

=
∫

P(Cn)
−LY logHCn

2π
· d
dt
◦ d
dt

·
(
−n · (−1 + n) · ω

(−1+n)
F-S:t

(−1 + n)! +
i · ρωF-S:t

2π
∧ ω

(−2+n)
F-S:t

(−2 + n)!

)∣∣∣∣∣
t=0

=
∫

P(Cn)
−LY logHCn

2π
· Q (fX : fX) · ω

(−1+n)
F-S

(−1 + n)!

=
∫

P(Cn)
fY · ∆F-S

4π
[−(2πn · fX) · (2πn · fX) +Q (fX : fX)] · ω

(−1+n)
F-S

(−1 + n)!

for any Y ∈ sl(n : C). Since ∆F-S is symmetric with respect to the
Fubini-Study Kaehler form ωF-S on P (Cn) we conclude from the last
equality that for any Y ∈ sl(n : C)

0 =
∫

P(Cn)

∆F-SfY
4π

· [−(2πn · fX) · (2πn · fX) +Q (fX : fX)] · ω
(−1+n)
F-S

(−1 + n)!

=
∫

P(Cn)
n · fY · [−(2πn · fX) · (2πn · fX) +Q (fX : fX)] · ω

(−1+n)
F-S

(−1 + n)!

and thence the assertion of Proposition IV.A is true. q.e.d.

Corollary IV.A. Assume that C
n and P (Cn) are respectively en-

dowed with the standard Hermitian metric HCn =
∑
δαβ ·wα ·wβ on C

n

and the Fubini-Study Kaehler form ωF-S = − i
2π∂∂ logHCn on P (Cn).

We define a symmetric quadratic operation Q on the eigenspace of the
lowest nonzero eigenvalue (4πn) of the Fubini-Study Laplacian ∆F-S on
P (Cn) as follows:
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Given X ∈ sl(n : C) and Y ∈ sl(n : C) let fX ∈ Γo (P (Cn) : R) and
fY ∈ Γo (P (Cn) : R) denote the smooth R-valued functions on P (Cn)
satisfying

LXωF-S = i∂∂fX and LY ωF-S = i∂∂fY .

We define Q (fX : fY ) through the following equality:

Q (fX : fY ) · ω
(−1+n)
F-S

(−1 + n)! = i∂∂fX ∧ i∂∂fY ∧
ω

(−3+n)
F-S

(−3 + n)! .

Then for each pair (fX : fY ) of elements of the eigenspace of the
lowest nonzero eigenvalue (4πn) of the Fubini-Study Laplacian ∆F-S on
P (Cn) the following smooth function:

− (2π · n · fX) · (2π · n · fY ) +Q (fX : fY )
on P (Cn) is orthogonal to the eigenspace of the lowest nonzero eigen-
value (4πn) of the Fubini-Study Laplacian ∆F-S on P (Cn).

Note that the Einstein-Hermitian connection A on E overM defines
a smooth distribution H of horizontal spaces on P(E):

T (P(E)) = V ⊕H.
Here V is the subbundle of T (P(E)) over P(E) consisting of tangent
vectors which are tangential to the fibers of π̌ : P(E) −→ M . Let V [∗]

denote the maximal subbundle of T ∗ (P(E)) over P(E) whose action on
H is identically zero. Then the decomposition T (P(E)) = V ⊕ H of
T (P(E)) over P(E) induces the following corresponding decomposition:

T ∗ (P(E)) = V [∗] ⊕ π̌∗ (T ∗(M))

of T ∗ (P(E)) over P(E). Thus we have the following decomposition:

∧∗T ∗ (P(E)) = CV ⊕ Cm ⊕ CM
of ∧∗T ∗ (P(E)) over P(E). Here CV = ∧∗V [∗] and CM = ∧∗π̌∗T ∗(M)
while Cm is the subbundle of ∧∗T ∗ (P(E)) over P(E) consisting of the
mixed components of ∧∗T ∗ (P(E)). Thus we have the following diagram:

CV
ΠCV←−−− ∧∗T ∗ (P(E))

ΠCM−−−→ CM�ΠCm

Cm
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of projection maps over P(E) such that id = ΠCV ⊕ ΠCm ⊕ ΠCM on
∧∗T ∗ (P(E)). Since the decomposition

T ∗ (P(E)) = V [∗] ⊕ π̌∗ (T ∗(M))

of T ∗ (P(E)) is defined by the Einstein-Hermitian connection A on E
over M we note that the representative

i · FAL∗

2π

of the Euler class e (L∗) of L∗ on P(E) has no nontrivial mixed compo-
nents of ∧∗T ∗ (P(E)):

i · FAL∗

2π
= ΠCV

(
i · FAL∗

2π

)
⊕ΠCM

(
i · FAL∗

2π

)
.

Now we introduce a Hermitian form (metric) ω̌ on P(E) by setting

ω̌ = ΠCV

(
i · FAL∗

2π

)
+ π̌∗ωM .

Remark. It should be noted that

ω̌(−1+m+n) = lim
k→+∞

k−m ·
(
i · FAL∗

2π
+ k · ωM

)(−1+m+n)

.

Actually ω̌ can be realized as a modified limit of
i·FAL∗

2π + k · ωM , as
k → +∞, with the base directions of P(E) being properly rescaled.

Note that the derivation operator

d : Γ (P(E) : R) −→ Γ (P(E) : T ∗ (P(E))⊗ R)

can be expressed as
d = dV + dM

in which dV : Γ (P(E) : R)−→Γ
(
P(E) : R⊗ V [∗]

)
and dM : Γ (P(E) : R)

−→ Γ (P(E) : R⊗ π̌∗ (T ∗(M))). Let d∗V and d∗M be respectively the
adjoint operators of dV and dM with respect to the Hermitian form
(metric) ω̌ on P(E). Then we have

∆ = d∗ ◦ d = ∆V +∆M
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in which ∆V ≡ d∗V ◦ dV and ∆M ≡ d∗M ◦ dM . Similarly we have ∂ =
∂V +∂M and ∂ = ∂V +∂M . Let ΛV and ΛM be respectively the adjoint
operators of

• �−→ ΠCV
i · FAL∗

2π
∧ •

and
• �−→ π̌∗ωM ∧ •

on P(E) with respect to the Hermitian form (metric) ω̌. We use the
symbols

(
∂∂
)
V
and

(
∂∂
)
M
to denote respectively ΠCV ◦ (∂∂) and ΠCM ◦

(∂∂): (
∂∂
)
V
= ΠCV ◦ (∂∂) and

(
∂∂
)
M
= ΠCM ◦ (∂∂).

Similarly we use the symbol
(
∂∂
)
m
to denote ΠCm ◦ (∂∂):

(
∂∂
)
m
=

ΠCm ◦(∂∂). Then we have the following results (proved in the Appendix
of [11]):

Proposition IV.B. Given f ∈ Γ (P(E) : R) we have the equalities

i · ΛV ◦
(
∂∂
)
V
f =

∆V f

2

and
i · ΛM ◦ (∂∂)

M
f =

∆Mf

2
.

Proposition IV.C. ∆M ◦∆V = ∆V ◦∆M .

In particular we have

∆M ◦ (−4πn · id + ∆V ) = (−4πn · id + ∆V ) ◦∆M

and thence ∆M preserves Γ (M :W ). In [11] it is shown that the invert-
ibility of the linear partial differential operator ∆M acting on Γ (M :W )
is equivalent to the simplicity of the holomorphic vector bundle E over
M . Actually each smooth section s of W over M can be realized as a
smooth Hermitian section of Hom (E : E) over M . Using the Einstein-
Hermitian condition of A on E over M it can be checked readily that
the smooth R-valued function s on P(E) satisfies ∆M s = 0 if and only
if its corresponding smooth Hermitian section of Hom (E : E) over M
is harmonic (and thence holomorphic by the Einstein-Hermitian condi-
tion of A on E over M). Thus the kernel of ∆M acting on Γ (M :W )
is isomorphic to

gE

kE
.
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It should be noted that the linear partial differential operator ∆M acting
on Γ (M :W ) is both nonnegative and symmetric (with respect to the
Hermitian form (metric) ω̌ on P(E)).
We can realize this picture more concretely as follows. Let GE de-

note the natural image of Aut (E) in Aut (P(E)) preserving the holo-
morphic projection map π̌ : P(E) −→M . Then we have

GE =
Aut (E)

C∗ .

Let gE denote the Lie algebra of GE over C. Let kE denote the compact
Lie algebra generated by the elements of gE preserving the representa-
tive

i · FAL∗

2π

of the Euler class of L∗ on P(E) so that gE is the complexification of kE .
Let KE denote the compact subgroup of GE generated by kE . Given a
smooth vector field Y ∈ gE on P(E) we denote by fY ∈ Γ (M :W ) the
corresponding smooth R-valued function on P(E) satisfying

LY

(
i · FAL∗

2π

)
= i∂∂fY .

(Note that when Y ∈ kE we have fY = 0.) Let NW denote the kernel
of ∆M acting on Γ (M :W ). Then we have

NW =
{
fY ∈ Γ (M :W ) : LY

(
i · FAL∗

2π

)
= i∂∂fY for some Y ∈ gE

kE

}
.

We can now decompose the function space Γ (M :W ) into the direct
sum of NW and the orthogonal complement of NW in Γ (M :W ). Thus
for f ∈ Γ (M :W ) we have

f = τ+
NW
(f)⊕ τNW

(f)

in which τ+
NW
(f) is orthogonal to NW while τNW

(f) is the NW -compo-
nent of f .
Let VM denote the infinitesimal deformation operator for the con-
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stant scalar curvature equation on (M : ωM ):

VM• = i∂∂
(
∆M•
4π

)
∧ ω

(−1+m)
M

(−1 +m)!

+
[
−ΛM trace

(
i · FωM

2π

)]
· i∂∂ • ∧ ω

(−1+m)
M

(−1 +m)!

+ i · ∂∂ • ∧trace
(
i · FωM

2π

)
∧ ω

(−2+m)
M

(−2 +m)!
=
∆M ◦∆M•

8π
· ω

m
M

m!
+
[
−ΛM trace

(
i · FωM

2π

)]
· ∆M•
2

· ω
m
M

m!

+ i · ∂∂ • ∧trace
(
i · FωM

2π

)
∧ ω

(−2+m)
M

(−2 +m)! .

Here FωM is the curvature form of the holomorphic tangent bundle of
M induced by the Kaehler form ωM on M while

ΛM trace
(
i · FωM

2π

)
is the scalar curvature of (M : ωM ):[

ΛM trace
(
i · FωM

2π

)]
· ω

m
M

m!
= trace

(
i · FωM

2π

)
∧ ω

(−1+m)
M

(−1 +m)! .

Let Γo (M : R) denote the space of smooth R-valued functions f on M
satisfying ∫

M
f · ΩM = 0.

Here we set ΩM ≡ ωmM
m! . Then the linear partial differential operator

VM
ΩM

=
VM
ωmM
m!

acting on Γo (M : R) is both nonnegative and symmetric (with respect
to the Kaehler form (metric) ωM on M). Note that the kernel of the
linear partial differential operator VM acting on Γo (M : R) is isomorphic
to the vector space

ho(M)
k(M :ωM )
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over R. LetNVM denote the vector space over R of the kernel of VM act-
ing on Γo (M : R). We can now decompose the function space Γo (M : R)
into the direct sum of NVM and the orthogonal complement of NVM in
Γo (M : R). Thus for f ∈ Γo (M : R) we have

f = τ+
NVM

(f)⊕ τNVM (f)

in which τ+
NVM

(f) is orthogonal to NVM while τNVM (f) is the NVM -
component of f :

VM
(
τNVM (f)

)
= 0⇐⇒

VM
(
τNVM (f)

)
ωmM
m!

= 0.

V. Gauge-fixing constant scalar curvature equation

In this section we will introduce the gauge-fixing constant scalar
curvature equation, depending on the parameter k ∈ N, and prove its
solvability when k is large enough.
Let oH#k

denote the Kaehler metric on P(E) induced by the Kaehler
form

oω#k
≡ i · FAL∗

2π
+ k · π̌∗ωM .

Suppose that, for each k ∈ N large enough, ω
#k
is a Kaehler form on

P(E) lying in the Kaehler class
[
oω#k

]
so that

ω
#k
= oω#k

+ i · ∂∂ψk

with ψk ∈ Γ (P(E) : R) satisfying∫
P(E)

ψk · ΩP(E) = 0⇐⇒
∫
M
σ̂ (ψk) · ΩM = 0

in which ΩM = ωmM
m! and ΩP(E) ≡ ω̌(−1+m+n)

(−1+m+n)! =

(
i·FAL∗

2π

)(−1+n)

(−1+n)! ∧ ωmM
m! . Let

čk ∈ R, depending on the parameter k ∈ N, be the topological invariant
satisfying the following equality:

čk ·
∫

P(E)

oω
(−1+m+n)
#k

(−1 +m+ n)! =
∫

P(E)

i · ∂∂ log det oH#k

2π
∧ oω

(−2+m+n)
#k

(−2 +m+ n)! .
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Let H
#k
be the Kaehler metric on P(E) induced by the Kaehler form

ω
#k
. Then the Constant Scalar Curvature Equation for ω

#k
is

S (ω
#k

)
= 0

in which

S (ω
#k

) ≡ −čk · ω(−1+m+n)
#k

(−1 +m+ n)! +
i · ∂∂ log detH

#k

2π
∧

ω(−2+m+n)
#k

(−2 +m+ n)! .

Based on the work [10, 11] we might want to solve the constant
scalar curvature equation, depending on k ∈ N large enough, directly.
However it is impractical to do so as there exist nontrivial kernels of
linear partial differential operators associated with the constant scalar
curvature equation. These nontrivial kernels exist simply because the
constant scalar curvature equation is invariant under the action of the
group Aut (P(E)) of holomorphic automorphisms of P(E). In order to
tackle this difficulty we add the following “gauge-fixing” term:(

n · τNW
◦ σ (ψk)
k

+
τNVM ◦ σ̂ (ψk)

k · k

)
· km · ΩP(E)

to the constant scalar curvature equation and define the “gauge-fixing
constant scalar curvature equation” as

SG-F

(
ω

#k

)
= 0

in which

SG-F

(
ω

#k

)
≡ S (ω

#k

)
+

(
n · τNW

◦ σ (ψk)
k

+
τNVM ◦ σ̂ (ψk)

k · k

)
· km · ΩP(E)

= −čk ·
ω(−1+m+n)

#k

(−1 +m+ n)! +
i · ∂∂ log detH

#k

2π
∧

ω(−2+m+n)
#k

(−2 +m+ n)!

+

(
n · τNW

◦ σ (ψk)
k

+
τNVM ◦ σ̂ (ψk)

k · k

)
· km · ΩP(E).

Let Γo (P(E) : R) denote the space of smooth R-valued functions f
on P(E) satisfying∫

P(E)
f · ΩP(E) = 0⇐⇒

∫
M
σ̂(f) · ΩM = 0.
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We will solve the gauge-fixing constant scalar curvature equation for k ∈
N large enough by considering ψk ∈ Γo (P(E) : R) admitting asymptotic
expansion of the following form:

ψk ∼ φ0 +
∑
θ∈N

φθ
kθ

as k → +∞. Here each φ• ∈ Γo (P(E) : R) is a smooth R-valued func-
tion, independent of the parameter k, on P(E). Besides the following
induction condition:

σ (φ0) = σ̃ (φ0) = 0 = σ̃ (φ1)⇐⇒ φ0 ∈ Γo (M : R)
and φ1 ∈ Γo (M : R)⊕ Γ (M :W )

is imposed on the leading terms φ0 and φ1.
Before solving the gauge-fixing constant scalar curvature equation,

for k large enough, we collect some relevant basic facts which can be
checked readily. Note that it is virtually better to rewrite the term

i · ∂∂ log detH
#k

2π

of the gauge-fixing constant scalar curvature equation SG-F

(
ω

#k

)
= 0

as
i

2π
· ∂∂ log (km · det Ȟ)+ i

2π
· ∂∂ log

(
ω(−1+m+n)

#k

km · ω̌(−1+m+n)

)
.

Here Ȟ is the Hermitian metric on P(E) induced by ω̌ and thence

km · det Ȟ

is a Hermitian metric on the dual of the canonical line bundle of P(E).
It can be shown that

i

2π
· ∂∂ log (km · det Ȟ)

= n · i · FAL∗

2π
+ π̌∗trace

(
i · FA

2π

)
+ π̌∗trace

(
i · FωM

2π

)
.

Here FA is the curvature form of E induced by the Einstein-Hermitian
connection A on E over M while FωM is the curvature form of the
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holomorphic tangent bundle of M induced by the Kaehler form ωM on
M . Since

i · ∂∂ log det oH#k

2π

=
i

2π
· ∂∂ log (km · det Ȟ)+ i

2π
· ∂∂ log

(
oω

(−1+m+n)
#k

km · ω̌(−1+m+n)

)

we have

čk ·
∫

P(E)

oω
(−1+m+n)
#k

(−1 +m+ n)!

=
∫

P(E)

i · ∂∂ log det oH#k

2π
∧ oω

(−2+m+n)
#k

(−2 +m+ n)!

=
∫

P(E)

i

2π
· ∂∂ log (km · det Ȟ) ∧ oω

(−2+m+n)
#k

(−2 +m+ n)!

=
∫

P(E)

[
n · i · FAL∗

2π
+ trace

(
i · FA

2π

)
+ trace

(
i · FωM

2π

)]
∧

oω
(−2+m+n)
#k

(−2 +m+ n)! .

Thus the topological invariant čk is a rational function of the parameter
k. By using the Einstein-Hermitian condition of the connection A on E
over M

n ·ΠCM

(
i · FAL∗

2π

)
∧ ω

(−1+m)
M

(−1 +m)! + trace
(
i · FA

2π

)
∧ ω

(−1+m)
M

(−1 +m)! = 0

it can be shown readily that the power series expansion of čk in 1
k is

čk = (−1 + n) · n+
ΛM trace

(
i·FωM

2π

)
k

+
čk:2

k · k + higher order terms

in which čk:2 is a constant, independent of the parameter k, while
ΛM trace

(
i·FωM

2π

)
is the scalar curvature of (M : ωM ):

[
ΛM trace

(
i · FωM

2π

)]
· ω

m
M

m!
= trace

(
i · FωM

2π

)
∧ ω

(−1+m)
M

(−1 +m)! .
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Now let us consider the asymptotic expansion of ψk as k → +∞.
By substituting

ω
#k
= oω#k

+ i∂∂ψk ∼ oω#k
+ i∂∂φ0 +

∑
θ∈N

i∂∂φθ
kθ

as k → +∞

into SG-F

(
ω

#k

)
we have

SG-F

(
ω

#k

) ∼ km ·(B0 +
∑
θ∈N

Bθ

kθ

)
as k → +∞

in which each B• is independent of the parameter k. In order to show
that the asymptotic expansion of ψk (as k → +∞) exists we simply
need to show the solvability of the following system of equations:

Bθ = 0⇐⇒ Bθ

ΩP(E)
= 0

for any integer θ ≥ 0. By using the induction condition
φ0 ∈ Γo (M : R) and φ1 ∈ Γo (M : R)⊕ Γ (M :W )

it can be checked readily that

B0 = 0 = B1.

We can then find

σ̂ (φθ)⊕ σ (φθ+1)⊕ σ̃ (φθ+2)

through solving the equation

Bθ+2

ΩP(E)
= σ̂

(
Bθ+2

ΩP(E)

)
⊕ σ

(
Bθ+2

ΩP(E)

)
⊕ σ̃

(
Bθ+2

ΩP(E)

)
= 0

by induction on integers θ ≥ 0. Actually we have the following result
(proved in Appendix I):

Proposition V.A. By choosing the induction condition

φ0 ∈ Γo (M : R) and φ1 ∈ Γo (M : R)⊕ Γ (M :W )

there exists a unique family of smooth R-valued functions φθ ∈
Γo (P(E) : R) on P(E), depending on integers θ ≥ 0, such that Bθ = 0
for any integer θ ≥ 0.



412 ying-ji hong

Now for each large N ∈ N we define a Kaehler form Nω#k
on P(E),

depending on k ∈ N large enough, as follows:

Nω#k
≡ oω#k

+ i∂∂φ0 +
∑

θ∈N with θ≤N

i∂∂φθ
kθ

=
i · FAL∗

2π
+ k · ωM + i∂∂φ0 +

∑
θ∈N with θ≤N

i∂∂φθ
kθ

.

Here each φ• is taken from the unique family of smooth R-valued func-
tions on P(E) of Proposition V.A. Then we have the following result:

Corollary V.A. Given γ ≥ 0 we denote by ‖ • ‖Cγ(P(E):ω̌) the Cγ-
norm of • with respect to the Hermitian form (metric) ω̌ on P(E). Given
p ∈ N there exists a corresponding constant C(γ:p) > 0 such that for each
N ≥ p we have ∥∥∥∥∥SG-F

(
Nω#k

)
km · ΩP(E)

∥∥∥∥∥
Cγ(P(E):ω̌)

≤ C(γ:p)

kp

whenever k ≥ k(γ:p:N). Here the choice of k(γ:p:N) ∈ N depends on N .

Actually when N ≥ p we have, by Proposition V.A,
B0 = · · · = Bp = 0

and therefore the smooth R-valued function
SG-F

(
N
ω
#k

)
km·ΩP(E)

on P(E) must

carry the factor 1
k·kp intrinsically when k > 0 is large enough (equiva-

lently when 1
k > 0 is small enough). Corollary V.A then follows imme-

diately from standard results of calculus.
We define for each large k ∈ N a functional R on the Kaehler class[

oω#k

]
=
[
i·FAL∗

2π + k · ωM

]
as follows:

R
(
oω#k

+ i∂∂•) ≡ (
oω#k

+ i∂∂•)(−1+m+n)

km · ω̌(−1+m+n)
=

(
oω#k+i∂∂•

)(−1+m+n)

(−1+m+n)!

km · ΩP(E)

for any Kaehler form
(
oω#k

+ i∂∂•) on P(E) lying in the Kaehler class[
oω#k

]
. Then the gauge-fixing constant scalar curvature equation for

ω
#k
= oω#k

+ i∂∂ψk can be expressed equivalently as follows:

SG-F

(
ω

#k

)
km · ΩP(E)

= 0
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in which
SG-F

(
ω

#k

)
km · ΩP(E)

≡ −čk ·R
(
ω

#k

)
+

i·∂∂ log R
(
ω

#k

)
2π ∧ ω

(−2+m+n)
#k

(−2+m+n)!

km · ΩP(E)

+

[
n · i·FAL∗

2π + π̌∗trace
(

i·FA
2π

)
+ π̌∗trace

(
i·FωM

2π

)]
∧ ω

(−2+m+n)
#k

(−2+m+n)!

km · ΩP(E)

+

(
n · τNW

◦ σ (ψk)
k

+
τNVM ◦ σ̂ (ψk)

k · k

)
.

Now for each large N ∈ N we define a corresponding 4th order (elliptic)
linear partial differential operator LN , depending on the parameter k,
acting on ψ ∈ Γo (P(E) : R) as follows:

LN (ψ) = −čk · ALN (ψ) +

i∂∂
2π

(
ALN (ψ)

R
(
N
ω
#k

)
)
∧ N

ω
(−2+m+n)
#k

(−2+m+n)!

km · ΩP(E)

+

i·∂∂ log R
(
N
ω
#k

)
2π ∧ i∂∂ψ ∧ N

ω
(−3+m+n)
#k

(−3+m+n)!

km · ΩP(E)
+ BLN (ψ)

+

(
n · τNW

◦ σ (ψ)
k

+
τNVM ◦ σ̂ (ψ)

k · k

)
.

Here ALN is the corresponding 2nd order linear partial differential op-
erator (without the 0th order part) acting on ψ ∈ Γo (P(E) : R) defined
as follows:

ALN (ψ) ≡
i∂∂ψ ∧ N

ω
(−2+m+n)
#k

(−2+m+n)!

km · ΩP(E)

while BLN is the corresponding 2nd order linear partial differential op-
erator (without the 0th order part) acting on ψ ∈ Γo (P(E) : R) defined
as follows:

BLN (ψ)

≡
i∂∂ψ ∧

[
n · i·FAL∗

2π +π̌∗trace
(

i·FA
2π

)
+π̌∗trace

(
i·FωM

2π

)]
∧ N

ω
(−3+m+n)
#k

(−3+m+n)!

km · ΩP(E)
.
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Proposition V.B. Let ‖ • ‖L2(P(E):ω̌) denote the L2-norm of •
with respect to the Hermitian form (metric) ω̌ on P(E). Then for each
large N ∈ N there exists a corresponding kN ∈ N such that for any
ψ ∈ Γo (P(E) : R) we have

C · ‖LN (ψ)‖L2(P(E):ω̌) ≥
∥∥∥∥(∆V +

∆M

k

)
◦
(
∆V +

∆M

k

)
σ̃ψ

∥∥∥∥
L2(P(E):ω̌)

+
∥∥∥∥(∆M + id)

k
◦
(
∆V +

∆M

k

)
σψ

∥∥∥∥
L2(P(E):ω̌)

+
∥∥∥∥(∆M + id) ◦ (∆M + id) σ̂ψ

k · k
∥∥∥∥
L2(P(E):ω̌)

whenever k ≥ kN . Here the constant C > 0 depends on (M : ωM ) and
the Einstein-Hermitian structure of the holomorphic vector bundle E
over M but not on N ∈ N.

Let P#k denote the 4th order (elliptic) linear partial differential op-
erator, depending on the parameter k, acting on ψ ∈ Γo (P(E) : R)
defined as follows:

P#k (ψ) =
∆V

8π
◦ (−4πn · id + ∆V )ψ

+
∆M◦∆V ψ

8π + ∆V ◦∆Mψ
8π

k
+
n · τNW

◦ σψ
k

+
∆M◦∆Mψ

8π +
[
−ΛM trace

(
i·FωM

2π

)]
· ∆Mψ

2

k · k

+

i(∂∂)
M

ψ∧
[
trace

(
i·FωM

2π

)]
∧ω

(−2+m)
M

(−2+m)!

ΩM

k · k
+
τNVM ◦ σ̂ψ
k · k .

Actually, for each large N ∈ N, it can be shown that LN is dominated
by P#k when the parameter k is sufficiently large.

Corollary V.B. Given integer γ ≥ 0 we define the Sobolev norm
‖ • ‖H[2γ](P(E):ω̌) of • as follows:

‖ • ‖H[2γ](P(E):ω̌) ≡ ‖ • ‖L2(P(E):ω̌) + ‖(∆V +∆M ) •‖L2(P(E):ω̌)

+ · · ·+ ‖(∆V +∆M )
γ •‖L2(P(E):ω̌) .



curvature equations 415

Then for each large N ∈ N there exists a corresponding k(γ:N) ∈ N such
that for any ψ ∈ Γo (P(E) : R) we have

Cγ · ‖LN (ψ)‖H[2γ](P(E):ω̌)

≥
∥∥∥∥(∆V +

∆M

k

)
◦
(
∆V +

∆M

k

)
σ̃ψ

∥∥∥∥
H[2γ](P(E):ω̌)

+
∥∥∥∥(∆M + id)

k
◦
(
∆V +

∆M

k

)
σψ

∥∥∥∥
H[2γ](P(E):ω̌)

+
∥∥∥∥(∆M + id) ◦ (∆M + id) σ̂ψ

k · k
∥∥∥∥
H[2γ](P(E):ω̌)

whenever k ≥ k(γ:N). Here the constant Cγ > 0 depends on γ but not
on N . In particular we have for any ψ ∈ Γo (P(E) : R) the following
estimate:

Cγ · ‖LN (ψ)‖H[2γ](P(E):ω̌) ≥
‖(∆V +∆M ) ◦ (∆V +∆M )ψ‖H[2γ](P(E):ω̌)

k · k
whenever k ≥ k(γ:N).

Remark. Note that the linear 2nd order elliptic linear partial
differential operator ∆M is coercive when acting on Γo (M : R). Besides
the linear 2nd order elliptic linear partial differential operator ∆M +∆V

is coercive when acting on Γo (P(E) : R).

We will prove these results in Appendix III.
Given γ ≥ 0 we denote by H [2γ]

o (P(E) : ω̌) the Sobolev space con-
sisting of R-valued functions f ∈ H [2γ] (P(E) : ω̌) on P(E) satisfying∫

P(E)
f · ΩP(E) = 0.

Note that Corollary V.B implies the invertibility of the 4th order (ellip-
tic) linear partial differential operator

LN : H [2γ+4]
o (P(E) : ω̌) −→ H [2γ]

o (P(E) : ω̌)

whenever k is sufficiently large. Let IN denote the inverse of LN . Then
we have, for any f ∈ H [2γ]

o (P(E) : ω̌), the following estimate:

‖INf‖H[2γ+4]
o (P(E):ω̌)

≤ Cγ · k · k · ‖f‖H[2γ]
o (P(E):ω̌)
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whenever k ≥ k(γ:N). Note that in this estimate for IN the constant
Cγ > 0 does not depend on N ∈ N though k(γ:N) must be chosen larger
for large N .
Given ψ ∈ Γo(P(E) : R) we note that, for t ∈ R,

d

dt

[
SG-F

(
Nω#k

+ t · i∂∂ψ)
km · ΩP(E)

]
= −čk · ALt

N (ψ) + BLt
N (ψ)

+

i∂∂
2π

(
ALtN (ψ)

R
(
N
ω
#k

+t·i∂∂ψ
)
)
∧
(
N
ω
#k

+t·i∂∂ψ
)(−2+m+n)

(−2+m+n)!

km · ΩP(E)

+

i·∂∂ log R
(
N
ω
#k

+t·i∂∂ψ
)

2π ∧ i∂∂ψ ∧
(
N
ω
#k

+t·i∂∂ψ
)(−3+m+n)

(−3+m+n)!

km · ΩP(E)

+

(
n · τNW

◦ σ (ψ)
k

+
τNVM ◦ σ̂ (ψ)

k · k

)

in which ALt
N and BLt

N are the corresponding 2
nd order nonlinear par-

tial differential operators acting on ψ ∈ Γo (P(E) : R) defined respec-
tively as follows:

ALt
N (ψ) ≡

i∂∂ψ ∧
(
N
ω
#k

+t·i∂∂ψ
)(−2+m+n)

(−2+m+n)!

km · ΩP(E)

and

BLtN (ψ)

≡
i∂∂ψ∧

[
n · i·FAL∗

2π
+π̌∗trace

(
i·FA
2π

)
+π̌∗trace

(
i·FωM

2π

)]
∧
(

N
ω#k

+t·i∂∂ψ
)(−3+m+n)

(−3+m+n)!

km · ΩP(E)

.

From the shape of d
dt

[
SG-F

(
N
ω
#k

+t·i∂∂ψ
)

km·ΩP(E)

]
it is easy to see that, for

bounded t ∈ R, the nonlinear partial differential operator

d

dt
◦ d
dt

[
SG-F

(
Nω#k

+ t · i∂∂ψ)
km · ΩP(E)

]
=
d

dt
◦ d
dt

[
S ( Nω#k

+ t · i∂∂ψ)
km · ΩP(E)

]
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is genuinely nonlinear. Actually, by the Sobolev Embedding Theorem,
for each sufficiently large γ ∈ N there exists a corresponding k(γ:N) ∈ N

such that for any pair (f : g) of elements of H [2γ]
o (P(E) : ω̌) satisfying

‖f‖H[2γ+4](P(E):ω̌) ≤ 1
k and ‖g‖H[2γ+4](P(E):ω̌) ≤ 1

k we have the following
estimate:∥∥∥∥∥− ddt ◦ ddt

[
SG-F

(
Nω#k

+ t · i∂∂f)
km · ΩP(E)

]

+
d

dt
◦ d
dt

[
SG-F

(
Nω#k

+ t · i∂∂g)
km · ΩP(E)

]∥∥∥∥∥
H[2γ](P(E):ω̌)

≤ Cγ ·
(
‖f‖H[2γ+4](P(E):ω̌) + ‖g‖H[2γ+4](P(E):ω̌)

)
· ‖−f + g‖H[2γ+4](P(E):ω̌)

whenever k ≥ k(γ:N). Here the constant Cγ > 0 can be chosen to be
independent of N ∈ N.
Now we note that for ψ ∈ Γo (P(E) : R) the gauge-fixing constant

scalar curvature equation for
(
Nω#k

+ i∂∂ψ
)
lying in the Kaehler class[

oω#k

]
can be expressed as

0 =
SG-F

(
Nω#k

+ i∂∂ψ
)

km · ΩP(E)
=
SG-F

(
Nω#k

)
km · ΩP(E)

+ LN (ψ) +GNN (ψ)

in which GNN is the genuinely nonlinear partial differential operator
acting on ψ ∈ Γo (P(E) : R) defined as follows:

GNN (ψ) ≡
∫ 1

0
(−t+ 1) · d

dt
◦ d
dt

[
SG-F

(
Nω#k

+ t · i∂∂ψ)
ΩP(E)

]
· dt

=
∫ 1

0
(−t+ 1) · d

dt
◦ d
dt

[
S ( Nω#k

+ t · i∂∂ψ)
ΩP(E)

]
· dt.

Since for any Kaehler form
(
Nω#k

+ i∂∂•) lying in the Kaehler class[
oω#k

]
the integral∫

P(E)

SG-F

(
Nω#k

+ i∂∂•)
ΩP(E)

· ΩP(E) =
∫

P(E)
SG-F

(
Nω#k

+ i∂∂•)
always vanishes we can apply the inverse IN of LN to the last expression
of the gauge-fixing constant scalar curvature equation and obtain the
following equivalent

0 = IN

(
SG-F

(
Nω#k

)
km · ΩP(E)

)
+ ψ + IN ◦GNN (ψ) .
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We will now solve this equation through the Contraction Mapping
Theorem. Given sufficiently large γ ∈ N we may choose large q ∈ N

such that the genuinely nonlinear operator IN ◦GNN , when acting on
the complete metric space{

ψ ∈ H [2γ+4]
o (P(E) : ω̌) : ‖ψ‖H[2γ+4](P(E):ω̌) ≤

1
kq

}
,

is contractive with contraction constant ≤ 1
2 whenever the parameter

k is large enough. On the other hand, by Corollary V.A and Corol-
lary V.B, we may choose sufficiently large N ∈ N such that∥∥∥∥∥IN

(
SG-F

(
Nω#k

)
km · ΩP(E)

)∥∥∥∥∥
H[2γ+4](P(E):ω̌)

≤ 1
k · kq

whenever the parameter k is large enough. Thus by the Contrac-
tion Mapping Theorem we conclude that for each suitable choice of
(γ : q : N) ∈ N×N×N the gauge-fixing constant scalar curvature equa-
tion can be solved uniquely, whenever the parameter k is large enough,
by a Kaehler form

(
Nω#k

+i∂∂ψ
)
on P(E) with ψ ∈H [2γ+4]

o (P(E) : ω̌)
satisfying

‖ψ‖H[2γ+4](P(E):ω̌) ≤
1
kq
.

With standard results of partial differential equations it can be
shown readily that the solutions ψ ∈ H [2γ+4]

o (P(E) : ω̌) to the gauge-
fixing constant scalar curvature equation, depending on sufficiently large
k, found in this way are actually smooth because we already have high
regularity and good approximation results. Hence we have:

Theorem V.A. When the parameter k ∈ N is sufficiently large the
corresponding gauge-fixing constant scalar curvature equation

SG-F

(
oω#k

+ i∂∂ψk

)
km · ΩP(E)

= 0

can be solved by some smooth R-valued function ψk ∈ Γo (P(E) : R) on
P(E). Besides this family of smooth R-valued functions ψk ∈ Γo(P(E) :
R) on P(E) admits asymptotic expansion of the following form

ψk ∼ φ0 +
∑
θ∈N

φθ
kθ



curvature equations 419

as k → +∞. Here each φ• is taken from the unique family of smooth
R-valued functions on P(E) of Proposition V.A. Actually, for each pair
(γ : q) ∈ N × N of large enough integers, we may even require, when
N ∈ N is chosen sufficiently large, that

oω#k
+ i∂∂ψk = Nω#k

+ i∂∂ψ(k:N)

with ψ(k:N) ∈ Γo (P(E) : R) satisfying∥∥ψ(k:N)

∥∥
H[2γ+4](P(E):ω̌)

≤ 1
kq

whenever k is large enough. In this case the choice of the solution

Nω#k
+ i∂∂ψ(k:N)

to the gauge-fixing constant scalar curvature equation

SG-F

(
Nω#k

+ i∂∂ψ(k:N)

)
km · ΩP(E)

= 0

with ψ(k:N) ∈ Γo (P(E) : R) satisfying
∥∥ψ(k:N)

∥∥
H[2γ+4](P(E):ω̌)

≤ 1
kq is, for

each sufficiently large k, unique.

Now we conclude this section with a remark. Suppose that, for each
k ∈ N large enough, the corresponding Futaki invariants associated with

gE + (the lifted action of) k(M :ωM )

and the Kaehler class
[
i·FAL∗

2π + k · π̌∗ωM

]
on P(E) are zero. Then, by

Theorem II.B, we may assume that

i · FAL∗

2π

is invariant under the lifted action of k(M :ωM ) on P(E). Thus both
i·FAL∗

2π
and ωM are invariant under the action of

(
kE + the lifting of k(M :ωM )

)
on P(E). In particular the gauge-fixing constant scalar curvature equa-
tion is invariant under the action of(

kE + the lifting of k(M :ωM )

)
on P(E). (Note that

[
gE : the lifting of k(M :ωM )

] ⊂ gE .) Hence, by
Proposition V.A and the uniqueness result of Theorem V.A, the solu-
tions

oω#k
+ i∂∂ψk = Nω#k

+ i∂∂ψ
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to the gauge-fixing constant scalar curvature equation, depending on
sufficiently large k, are invariant under the action of

(
kE+ the lifting of

k(M :ωM )

)
on P(E).

VI. Solving the constant scalar curvature equation

In this section our main purpose is to prove Theorem A based on the
solvability results for the gauge-fixing constant scalar curvature equation
— Theorem V.A.
By Theorem II.B we may assume that the lifting of k(M :ωM ) on P(E)

preserves
i·FAL∗

2π . Moreover such lifting of k(M :ωM ) on P(E) is, modulo
the compact Lie subalgebra kE of gE , uniquely determined. Thus, by
complexification, there is a preferred lifting of ho(M) on P(E) which
is essentially uniquely determined. In this section will fix one such
preferred lifting of ho(M). Besides, for each smooth vector field X on
M preserving the complex structure of M , we will use the same symbol
X to denote the lifting of X on P(E) when there is no confusion.
Now we fix respectively a K(M :ωM )-invariant metric on ho(M) and a

KE-invariant metric on gE . Here KE is the maximal compact subgroup
of GE . By doing so the R-linear subspace of ho(M), orthogonal to
k(M :ωM ), is isomorphic to the R-linear space NVM while the R-linear
subspace of gE , orthogonal to kE , is isomorphic to the R-linear space
NW . In particular, for each f ∈ NVM , ‖f‖C0(P(E):ω̌) is comparable
with the C0-norm of its correspondent in the orthogonal complement
of k(M :ωM ) in ho(M). Moreover this comparability is uniform on NVM .
Actually fixing a K(M :ωM )-invariant metric on ho(M) simply means that
we have fixed the uniform comparability between NVM and

ho(M)
k(M :ωM )

.

Similar results are valid for NVM .
Let ω

#k
= oω#k

+ i∂∂ψk denote the solution of Theorem V.A to the
gauge-fixing constant scalar curvature equation. We will denote by 〈 : 〉
the inner product on L2 (P(E) : ω̌) defined by the Hermitian (metric)
form ω̌ on P(E):

〈f : g〉 ≡
∫

P(E)
f · g · ΩP(E)

∀(f : g) ∈ L2 (P(E) : ω̌) × L2 (P(E) : ω̌). Besides we will use the sym-
bol c to denote a sufficiently large constant > 0 independent of the
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parameter k.
Suppose that Xk ∈ Γ (M : T (M)), orthogonal to k(M :ωM ), is the

smooth vector field on M , preserving the complex structure of M , such
that

LXkωM = i∂∂
(
τNVM ◦ σ̂ψk

)
.

Let fXk ∈ Γo (P(E) : R) be the corresponding smooth R-valued function
on P(E) satisfying

LXk

(
i · FAL∗

2π

)
= i∂∂fXk .

Then we have

LXkω#k
= i∂∂

(
k · τNVM ◦ σ̂ψk + fXk + LXkψk

)
.

Since the Futaki invariant, corresponding to Xk and the Kaehler
class

[
i·FAL∗

2π + k · π̌∗ωM

]
on P(E), vanishes we have, by incorporating

the gauge-fixing constant scalar curvature equation, the following equal-
ity:∫

P(E)

(
k · τNVM ◦ σ̂ψk + fXk + LXkψk

)
·
[
n · τNW

◦ σψk

k
+
τNVM ◦ σ̂ψk

k · k
]
· ΩP(E) = 0.

Since Γ (M : R) is orthogonal to Γ (M :W ) with respect to the inner
product 〈 : 〉 on L2 (P(E) : ω̌) we note that the term∫

P(E)
k · τNVM ◦ σ̂ (ψk) · n · τNW

◦ σψk

k
· ΩP(E)

of the above equality vanishes. Thus, when the parameter k is suffi-
ciently large, we infer from Theorem V.A that there exists a constant
c > 0, independent of k, such that

‖fXk‖C0(P(E):ω̌) + ‖LXkψk‖C0(P(E):ω̌) ≤ c · ‖Xk‖C0(P(E):ω̌).

On the other hand
‖Xk‖C0(P(E):ω̌)
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is comparable with ‖τNVM ◦σ̂ (ψk) ‖C0(P(E):ω̌). Thus, by using the Schwarz
inequality, we infer from the above equality∫

P(E)

(
k · τNVM ◦ σ̂ψk + fXk + LXkψk

)
·
[
n · τNW

◦ σψk

k
+
τNVM ◦ σ̂ψk

k · k
]
· ΩP(E) = 0

that, when k is sufficiently large, there exists a constant ĉ > 0, inde-
pendent of k, such that

‖τNVM ◦ σ̂ (ψk) ‖2
C0(P(E):ω̌) ≤ ĉ · ‖τNW

◦ σ (ψk) ‖2
C0(P(E):ω̌).

Suppose that Yk ∈ gE , orthogonal to kE , is the smooth vector field
on P(E) such that

LYk

(
i · FAL∗

2π

)
= i∂∂ (τNW

◦ σψk) .

Then we have

LYkω#k
= i∂∂ (τNW

◦ σψk + LYkψk) .

Since the Futaki invariant, corresponding to Yk and the Kaehler class[
i·FAL∗

2π + k · π̌∗ωM

]
on P(E), vanishes we have, by incorporating the

gauge-fixing constant scalar curvature equation, the following equality:∫
P(E)

(τNW
◦ σψk + LYkψk)

·
[
n · τNW

◦ σψk

k
+
τNVM ◦ σ̂ψk

k · k
]
· ΩP(E) = 0.

Since Γ (M : R) is orthogonal to Γ (M :W ) with respect to the inner
product 〈 : 〉 on L2 (P(E) : ω̌) we note that the term∫

P(E)
τNW

◦ σ (ψk) ·
τNVM ◦ σ̂ψk

k · k · ΩP(E)

of the above equality vanishes. Since the zeroth order term φ0 in the
asymptotic expansion of ψk, as k → +∞,

ψk ∼ φ0 +
+∞∑
θ=1

φθ
kθ
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satisfies
σ (φ0) = σ̃ (φ0) = 0⇐⇒ φ0 ∈ Γo (M : R)

we infer from Theorem V.A that, when the parameter k is sufficiently
large, there exists a constant c > 0, independent of k, such that

‖LYkψk‖C0(P(E):ω̌) ≤ c ·
‖Yk‖C0(P(E):ω̌)

k

because LYkφ0 = 0. On the other hand

‖Yk‖C0(P(E):ω̌)

is comparable with ‖τNW
◦σ (ψk) ‖C0(P(E):ω̌). Thus, by using the Schwarz

inequality, we infer from the above equality∫
P(E)
(τNW

◦ σψk + LYkψk) ·
[
n · τNW

◦ σψk

k
+
τNVM ◦ σ̂ψk

k · k
]
· ΩP(E) = 0

that, when k is sufficiently large, there exists a constant c̃ > 0, inde-
pendent of k, such that

‖τNW
◦ σ (ψk) ‖2

C0(P(E):ω̌) ≤ c̃ ·
‖τNVM ◦ σ̂ (ψk) ‖2

C0(P(E):ω̌)

k · k .

By comparing this inequality

‖τNW
◦ σ (ψk) ‖2

C0(P(E):ω̌) ≤ c̃ ·
‖τNVM ◦ σ̂ (ψk) ‖2

C0(P(E):ω̌)

k · k
with the previous inequality

‖τNVM ◦ σ̂ (ψk) ‖2
C0(P(E):ω̌) ≤ ĉ · ‖τNW

◦ σ (ψk) ‖2
C0(P(E):ω̌)

we conclude immediately that

τNVM ◦ σ̂ (ψk) = 0 = τNW
◦ σ (ψk)

when the parameter k is sufficiently large.
Hence the (uniquely determined, for each k) smooth R-valued solu-

tions ψk of Theorem V.A to the gauge-fixing constant scalar curvature
equation are actually solutions to the constant scalar curvature equa-
tion, without gauge-fixing, when the parameter k is sufficiently large.

q.e.d.
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Appendix I. Induction scheme

We will prove Proposition V.A by induction on integers θ ≥ 0. Be-
fore proceeding we note that the integral of SG-F(•) on P(E) is always
zero:∫

P(E)
SG-F(•) =

∫
P(E)

SG-F(•)
ΩP(E)

· ΩP(E) =
∫

P(E)
σ̂

(SG-F(•)
ΩP(E)

)
· ΩP(E) = 0.

Let us start with solving the equation

B2 = 0⇐⇒ B2

ΩP(E)
= 0.

Assume that

ω(−1+m+n)
#k

km · ω̌(−1+m+n)
∼ oω

(−1+m+n)
#k

km · ω̌(−1+m+n)
+
R1

k
+
R2

k · k + higher order terms

in which R1 and R2 are independent of the parameter k. Since the
connection A on E over M is Einstein-Hermitian we have

n ·ΠCM

(
i · FAL∗

2π

)
∧ ω

(−1+m)
M

(−1 +m)! + trace
(
i · FA

2π

)
∧ ω

(−1+m)
M

(−1 +m)! = 0

and thence

oω
(−1+m+n)
#k

km · ω̌(−1+m+n)
=
ΩP(E)

ΩP(E)
+
−ΛM trace

(
i·FA
2π

)
n

k

+

(
i·FAL∗

2π

)(n+1)

(n+1)!
∧ω

(−2+m)
M

(−2+m)!

ΩP(E)

k · k + higher order terms

in which ΛM trace
(

i·FA
2π

)
is the constant associated with the Einstein-

Hermitian connection A on E over M :[
ΛM trace

(
i · FA

2π

)]
· ω

m
M

m!
= trace

(
i · FA

2π

)
∧ ω

(−1+m)
M

(−1 +m)! .

Besides it can be checked readily that

R1 =
∆Mφ0

2
+
∆V φ1

2
=
∆Mφ0

2
+
∆V σ (φ1)

2
=
∆Mφ0

2
+ 2πn · σ (φ1)
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and

R2 =
∆V φ2

2
+
Q (σ (φ1) : σ (φ1))

2!
+
∆Mφ0

2
· ∆V φ1

2

+
i∂∂φ0∧i∂∂φ0

2! ∧ ω
(−2+m)
M

(−2+m)!

ΩM
+
i∂∂φ0 ∧

(
i·FAL∗

2π

)n
n! ∧ ω

(−2+m)
M

(−2+m)!

ΩP(E)

+
i∂∂φ1 ∧

(
i·FAL∗

2π

)(−1+n)

(−1+n)! ∧ ω
(−1+m)
M

(−1+m)!

ΩP(E)
.

Here the symmetric quadratic operator Q (• : •) is defined along each
fiber P (Cn) of the holomorphic projection map π̌ : P(E) −→ M as in
Proposition IV.A and Corollary IV.A. Thus

B2

ΩP(E)
= −

(
(−1 + n) · n ·R2 +

[
ΛM trace

(
i · FωM

2π

)]
·R1

)
+ n · (−2 + n) · ∆V φ2

2

+ n · (−1 + n) ·
i∂∂φ1 ∧

(
i·FAL∗

2π

)(−1+n)

(−1+n)! ∧ ω
(−1+m)
M

(−1+m)!

ΩP(E)

+ n · n ·
i∂∂φ0 ∧

(
i·FAL∗

2π

)n
n! ∧ ω

(−2+m)
M

(−2+m)!

ΩP(E)

+ n · (−3 + n) · Q (σ (φ1) : σ (φ1))
2!

+ n · (−2 + n) · ∆Mφ0

2
· ∆V φ1

2

+ n · (−1 + n) ·
i∂∂φ0∧i∂∂φ0

2! ∧ ω
(−2+m)
M

(−2+m)!

ΩM

+
[
ΛM trace

(
i · FA

2π

)
+ ΛM trace

(
i · FωM

2π

)]
· ∆V φ1

2

+

[
trace

(
i·FA
2π

)
+ trace

(
i·FωM

2π

)]
∧ i∂∂φ0 ∧ ω

(−2+m)
M

(−2+m)!

ΩM
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+
i∂∂R1

2π ∧
(
i·FAL∗

2π

)(−1+n)

(−1+n)! ∧ ω
(−1+m)
M

(−1+m)!

ΩP(E)

+Q
(
σ (R1)
2π

: σ (φ1)
)
+
∆VR1

4π
· ∆Mφ0

2

+
∆VR2

4π
+
−∆V

8π

−ΛM trace
(

i·FA
2π

)
n

+R1

2

+ n · τNW
◦ σ (φ1) + τNVM ◦ σ̂ (φ0) + known terms.

By substituting the formulae for R1 and R2 into the above expression
of B2

ΩP(E)
we see that

B2

ΩP(E)
= −

[
ΛM trace

(
i · FωM

2π

)]
· ∆Mφ0

2
+ (−n) · ∆V φ2

2

+ n ·
i∂∂φ0 ∧

(
i·FAL∗

2π

)n
n! ∧ ω

(−2+m)
M

(−2+m)!

ΩP(E)

+
[
ΛM trace

(
i · FA

2π

)]
· ∆V φ1

2

+

[
trace

(
i·FA
2π

)
+ trace

(
i·FωM

2π

)]
∧ i∂∂φ0 ∧ ω

(−2+m)
M

(−2+m)!

ΩM

+
∆M ◦∆Mφ0

8π
+
n · i∂∂σ (φ1) ∧

(
i·FAL∗

2π

)(−1+n)

(−1+n)! ∧ ω
(−1+m)
M

(−1+m)!

ΩP(E)

+
∆VR2

4π
+
[
ΛM trace

(
i · FA

2π

)]
· ∆V σ (φ1)

2

+ (−n) · ∆Mφ0

2
· ∆V σ (φ1)

2

+ (−n · n · π) · ∆V

2
[σ (φ1) · σ (φ1)]

+ n · τNW
◦ σ (φ1) + τNVM ◦ σ̂ (φ0) + known terms.

Since
i·FAL∗

2π = ΠCV
(

i·FAL∗
2π

)
⊕ ΠCM

(
i·FAL∗

2π

)
we have (by using the
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Einstein-Hermitian condition of A on E over M)

i∂∂σ (φ1) ∧
(
i·FAL∗

2π

)(−1+n)

(−1+n)! ∧ ω
(−1+m)
M

(−1+m)!

ΩP(E)

=
∆Mσ (φ1)

2
+
∆V σ (φ1)

2
·
ΠCM

(
i·FAL∗

2π

)
∧ ω

(−1+m)
M

(−1+m)!

ΩM

=
∆Mσ (φ1)

2
+

[
−ΛM trace

(
i·FA
2π

)]
n

· ∆V σ (φ1)
2

and thence

B2

ΩP(E)
= −

[
ΛM trace

(
i · FωM

2π

)]
· ∆Mφ0

2
+ (−n) · ∆V φ2

2

+ n ·
i∂∂φ0 ∧

(
i·FAL∗

2π

)n
n! ∧ ω

(−2+m)
M

(−2+m)!

ΩP(E)

+

[
trace

(
i·FA
2π

)
+ trace

(
i·FωM

2π

)]
∧ i∂∂φ0 ∧ ω

(−2+m)
M

(−2+m)!

ΩM

+
∆M ◦∆Mφ0

8π
+ n · ∆Mσ (φ1)

2

+
∆VR2

4π
+
[
ΛM trace

(
i · FA

2π

)]
· ∆V σ (φ1)

2

+ (−n) · ∆Mφ0

2
· ∆V σ (φ1)

2

+ (−n · n · π) · ∆V

2
[σ (φ1) · σ (φ1)]

+ n · τNW
◦ σ (φ1) + τNVM ◦ σ̂ (φ0) + known terms.

Now we note that

∫
P(Cn)

n ·
i∂∂φ0 ∧

(
i·FAL∗

2π

)n
n! ∧ ω

(−2+m)
M

(−2+m)!

ΩP(E)

=
∫

P(Cn)
n ·

i∂∂φ0 ∧ΠCM
(

i·FAL∗
2π

)
∧ ω

(−2+m)
M

(−2+m)!

ΩM
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=
∫

P(Cn)
−
i∂∂φ0 ∧ trace

(
i·FA
2π

)
∧ ω

(−2+m)
M

(−2+m)!

ΩM

along each fiber P (Cn) of π̌ : P(E) −→M . Thus

σ̂

(
B2

ΩP(E)

)
= −

[
ΛM trace

(
i·FωM

2π

)]
·∆Mφ0

2

+
trace

(
i·FωM

2π

)
∧ i∂∂φ0 ∧ ω

(−2+m)
M

(−2+m)!

ΩM
+
∆M ◦∆Mφ0

8π
+ τNVM φ0 + σ̂ (known terms)

=
(VM
ΩM

+ τNVM

)
φ0 + σ̂ (known terms) .

Remark. Let ξA denote the smooth (−1 +m + n)-form on P(E)
defined by A as follows:

ξA ≡ (n+ n) ·
(

i·FAL∗
2π

)(n+1)

(n+ 1)!
∧ ω

(−2+m)
M

(−2 +m)!

+ π̌∗trace
(
i · FA

2π

)
∧
(

i·FAL∗
2π

)n
n!

∧ ω
(−2+m)
M

(−2 +m)!

+ π̌∗trace
(
i · FωM

2π

)
∧
(

i·FAL∗
2π

)n
n!

∧ ω
(−2+m)
M

(−2 +m)! .

Let ξA
ΩP(E)

denote the smooth R-valued function on P(E) satisfying

ξA =
ξA
ΩP(E)

· ΩP(E).

Then, using the constancy of the scalar curvature of (M : ωM ) and the
Einstein-Hermitian condition satisfied by A, it can be shown that

σ̂

(
B2

ΩP(E)

)
=
(VM
ΩM

+ τNVM

)
φ0 + σ̂

(
−cξA +

ξA
ΩP(E)

)
in which cξA ∈ R is the constant satisfying

cξA ·
∫

P(E)
ΩP(E) =

∫
P(E)

ξA.
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Thus in the equality

σ̂

(
B2

ΩP(E)

)
= −

[
ΛM trace

(
i·FωM

2π

)]
·∆Mφ0

2

+
trace

(
i·FωM

2π

)
∧ i∂∂φ0 ∧ ω

(−2+m)
M

(−2+m)!

ΩM
+
∆M ◦∆Mφ0

8π
+ τNVM φ0 + σ̂ (known terms)

=
(VM
ΩM

+ τNVM

)
φ0 + σ̂ (known terms) .

the phrase “known terms” simply means

−cξA +
ξA
ΩP(E)

which is, given A, obviously a known smooth R-valued function on M .

Since the elliptic linear partial differential operator
(

VM
ΩM

+ τNVM

)
acting on Γo (M : R) is both symmetric and positive we infer that

φ0 ∈ Γo (M : R)

can be uniquely solved from the equation σ̂
(

B2
ΩP(E)

)
= 0.

With φ0 ∈ Γo (M : R) being known we have (by the Einstein-Hermi-
tian condition of A on E over M)

R2 =
∆V φ2

2
+
Q (σ (φ1) : σ (φ1))

2!
+
∆Mφ0

2
· ∆V σ (φ1)

2

+
∆Mσ (φ1)

2
+

[
−ΛM trace

(
i·FA
2π

)]
n

· ∆V σ (φ1)
2

+
∆M σ̂ (φ1)

2
+ known terms

and thence

B2

ΩP(E)
=
∆V

8π
◦ (−4πn · id + ∆V )φ2

+
∆V

8π
[−(2πn · σφ1) · (2πn · σφ1) +Q (σφ1 : σφ1)]

+ n · (∆M + 8π · τNW
)σ (φ1) + known terms.
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Now by Proposition IV.A we have

σ

(
B2

ΩP(E)

)
= n · (∆M + 8π · τNW

)σ (φ1) + σ (known terms) .

Since the elliptic linear partial differential operator (∆M + 8π · τNW
)

acting on Γ (M :W ) is both symmetric and positive we infer that σ (φ1)
∈ Γ (M :W ) can be uniquely solved from the equation σ

(
B2

ΩP(E)

)
= 0.

With both φ0 ∈ Γo (M : R) and σ (φ1) ∈ Γ (M :W ) being known we
have

σ̃

(
B2

ΩP(E)

)
=
∆V

8π
◦ (−4πn · id + ∆V ) σ̃ (φ2) + σ̃ (known terms)

and thence σ̃ (φ2) can be uniquely solved from the equation σ̃
(

B2
ΩP(E)

)
=

0 fiberwisely.
Now given θ ∈ N we will solve the equation

Bθ+2 = 0⇐⇒ Bθ+2

ΩP(E)
= 0

under the hypothesis that

σ̂ (φµ)⊕ σ (φµ+1)⊕ σ̃ (φµ+2)

is already known for any integer 0 ≤ µ < θ. In particular σ̂ (φ0) ⊕
σ (φ1) ⊕ σ̃ (φ2) and R1 = ∆Mφ0

2 + ∆V σ(φ1)
2 = ∆Mφ0

2 + 2πn · σ (φ1) are
already known.
Suppose that

ω(−1+m+n)
#k

km · ω̌(−1+m+n)
∼ oω

(−1+m+n)
#k

km · ω̌(−1+m+n)
+
R1

k

+ · · ·+ Rθ+1

kθ · k +
Rθ+2

kθ · k · k + higher order terms

in which each R• is independent of the parameter k. Then by our
induction hypothesis we have Rµ being known for any µ ∈ N satisfying
µ ≤ θ. It can be checked readily that

Rθ+1 =
∆M σ̂ (φθ)

2
+
∆V σ (φθ+1)

2
+ known terms
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and

Rθ+2 =
∆V φθ+2

2
+
i∂∂φθ+1 ∧

(
i·FAL∗

2π

)(−1+n)

(−1+n)! ∧ ω
(−1+m)
M

(−1+m)!

ΩP(E)

+
i∂∂σ̂ (φθ) ∧ΠCM

(
i·FAL∗

2π

)
∧ ω

(−2+m)
M

(−2+m)!

ΩM
+Q (σφ1 : σφθ+1)

+
∆V σ (φ1)

2
· ∆M σ̂ (φθ)

2
+
∆Mφ0

2
· ∆V σ (φθ+1)

2

+
i∂∂φ0 ∧ i∂∂σ̂ (φθ) ∧ ω

(−2+m)
M

(−2+m)!

ΩM
+ known terms.

Note that σ̃ (Rθ+1) is already known. Thus

Bθ+2

ΩP(E)
= −

(
(−1 + n) · n ·Rθ+2 +

[
ΛM trace

(
i · FωM

2π

)]
·Rθ+1

)
+ n · (−2 + n) · ∆V φθ+2

2

+ n · (−1 + n) ·
i∂∂φθ+1 ∧

(
i·FAL∗

2π

)(−1+n)

(−1+n)! ∧ ω
(−1+m)
M

(−1+m)!

ΩP(E)

+ n · n ·
i∂∂σ̂ (φθ) ∧ΠCM

(
i·FAL∗

2π

)
∧ ω(−2+m)

(−2+m)!

ΩM

+ n · (−3 + n) ·Q (σφ1 : σφθ+1)

+ n · (−2 + n) · ∆Mφ0

2
· ∆V σ (φθ+1)

2

+ n · (−2 + n) · ∆V σ (φ1)
2

· ∆M σ̂ (φθ)
2

+ n · (−1 + n) ·
i∂∂φ0 ∧ i∂∂σ̂ (φθ) ∧ ω

(−2+m)
M

(−2+m)!

ΩM

+
[
ΛM trace

(
i · FA

2π

)
+ ΛM trace

(
i · FωM

2π

)]
· ∆V σ (φθ+1)

2

+

[
trace

(
i·FA
2π

)
+ trace

(
i·FωM

2π

)]
∧ i∂∂σ̂ (φθ) ∧ ω

(−2+m)
M

(−2+m)!

ΩM

+Q
(
σ (R1)
2π

: σ (φθ+1)
)
+
∆VR1

4π
· ∆M σ̂ (φθ)

2
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+
i∂∂Rθ+1

2π ∧
(
i·FAL∗

2π

)(−1+n)

(−1+n)! ∧ ω
(−1+m)
M

(−1+m)!

ΩP(E)
+Q

(
σ (φ1) :

σ (Rθ+1)
2π

)
+
∆Mφ0

2
· ∆VRθ+1

4π
+
∆VRθ+2

4π

+
−∆V

4π

−ΛM trace
(

i·FA
2π

)
n

+R1

 ·Rθ+1


+ n · τNW

◦ σ (φθ+1) + τNVM ◦ σ̂ (φθ) + known terms.

Substituting the formulae for Rθ+1 and Rθ+2 into this expression of
Bθ+2

ΩP(E)
we have

Bθ+2

ΩP(E)
= −

[
ΛM trace

(
i · FωM

2π

)]
· ∆M σ̂ (φθ)

2
+ (−n) · ∆V φθ+2

2

+ n ·
i∂∂σ̂ (φθ) ∧ΠCM

(
i·FAL∗

2π

)
∧ ω(−2+m)

(−2+m)!

ΩM

+
[
ΛM trace

(
i · FA

2π

)]
· ∆V σ (φθ+1)

2

+

[
trace

(
i·FA
2π

)
+ trace

(
i·FωM

2π

)]
∧ i∂∂σ̂ (φθ) ∧ ω

(−2+m)
M

(−2+m)!

ΩM

+
∆M ◦∆M σ̂ (φθ)

8π

+
n · i∂∂σ (φθ+1) ∧

(
i·FAL∗

2π

)(−1+n)

(−1+n)! ∧ ω
(−1+m)
M

(−1+m)!

ΩP(E)

+
∆VRθ+2

4π
+
−∆V

4π

−ΛM trace
(

i·FA
2π

)
n

+R1

 ·Rθ+1


+ n · τNW

◦ σ (φθ+1) + τNVM ◦ σ̂ (φθ) + known terms.

Since
i·FAL∗

2π = ΠCV
(

i·FAL∗
2π

)
⊕ ΠCM

(
i·FAL∗

2π

)
we have (by using the
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Einstein-Hermitian condition of A on E over M)

i∂∂σ (φθ+1) ∧
(
i·FAL∗

2π

)(−1+n)

(−1+n)! ∧ ω
(−1+m)
M

(−1+m)!

ΩP(E)

=
∆Mσ (φθ+1)

2
+

[
−ΛM trace

(
i·FA
2π

)]
n

· ∆V σ (φθ+1)
2

and thence

Bθ+2

ΩP(E)
= −

[
ΛM trace

(
i · FωM

2π

)]
· ∆M σ̂ (φθ)

2
+ (−n) · ∆V φθ+2

2

+ n ·
i∂∂σ̂ (φθ) ∧ΠCM

(
i·FAL∗

2π

)
∧ ω(−2+m)

(−2+m)!

ΩM

+

[
trace

(
i·FA
2π

)
+ trace

(
i·FωM

2π

)]
∧ i∂∂σ̂ (φθ) ∧ ω

(−2+m)
M

(−2+m)!

ΩM

+
∆M ◦∆M σ̂ (φθ)

8π
+ n · ∆Mσ (φθ+1)

2

+
∆VRθ+2

4π
+
−∆V

4π

−ΛM trace
(

i·FA
2π

)
n

+R1

 ·Rθ+1


+ n · τNW

◦ σ (φθ+1) + τNVM ◦ σ̂ (φθ) + known terms.

Since

∫
P(Cn)

 n · i∂∂σ̂ (φθ) ∧ΠCM
(

i·FAL∗
2π

)
∧ ω

(−2+m)
M

(−2+m)!

ΩM

+
i∂∂σ̂ (φθ) ∧ trace

(
i·FA
2π

)
∧ ω

(−2+m)
M

(−2+m)!

ΩM

 = 0

along each fiber P (Cn) of π̌ : P(E) −→M we have:
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σ̂

(
Bθ+2

ΩP(E)

)
= −

[
ΛM trace

(
i·FωM

2π

)]
·∆M σ̂ (φθ)

2

+
trace

(
i·FωM

2π

)
∧ i∂∂σ̂ (φθ) ∧ ω

(−2+m)
M

(−2+m)!

ΩM

+
∆M ◦∆M σ̂ (φθ)

8π
+ τNVM ◦ σ̂ (φθ) + σ̂ (known terms)

=
(VM
ΩM

+ τNVM

)
σ̂ (φθ) + σ̂ (known terms) .

Thus σ̂ (φθ) ∈ Γo (M : R) can be uniquely solved from the equation
σ̂
(

Bθ+2

ΩP(E)

)
= 0.

With σ̂ (φθ) ∈ Γo (M : R) being known we have (by the Einstein-
Hermitian condition of A on E over M)

Rθ+2 =
∆V φθ+2

2
+
∆Mσ (φθ+1)

2
+
∆M σ̂ (φθ+1)

2

+

[
−ΛM trace

(
i·FA
2π

)]
n

· ∆V σ (φθ+1)
2

+Q (σφ1 : σφθ+1) +
∆Mφ0

2
· ∆V σ (φθ+1)

2
+ known terms

and thence
Bθ+2

ΩP(E)
=
∆V

8π
◦ (−4πn · id + ∆V )φθ+2 + n ·∆Mσ (φθ+1)

+
∆V

4π
[−(2πn · σφ1) · (2πn · σφθ+1) +Q (σφ1 : σφθ+1)]

+ n · τNW
◦ σ (φθ+1) + known terms.

Now by Corollary IV.A we have

σ

(
Bθ+2

ΩP(E)

)
= n · (∆M + 8π · τNW

)σ (φθ+1) + σ (known terms) .

Thus σ (φθ+1) ∈ Γ (M :W ) can be uniquely solved from the equa-
tion σ

(
Bθ+2

ΩP(E)

)
= 0. With both σ̂ (φθ) ∈ Γo (M : R) and σ (φθ+1) ∈

Γ (M :W ) being known we have

σ̃

(
Bθ+2

ΩP(E)

)
=
∆V

8π
◦ (−4πn · id + ∆V )φθ+2 + σ̃ (known terms)
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and thence σ̃ (φθ+2) can be uniquely solved from the equation σ̃
(

Bθ+2

ΩP(E)

)
= 0 fiberwise. q.e.d.

Appendix II. Proof of Theorem II.B

Since
0 = [FA (Z : )] ∈ H1

∂A
(M : Hom (E : E))

there exists, by Theorem II.A, a smooth vector field X̌Z on P(E) preserv-
ing both the complex structure of P(E) and the holomorphic projection
map π̌ : P(E) −→M such that

π̌∗X̌Z = XZ .

Since XZ preserves the Kaehler form ωM on M we have

LX̌Z
ωM = 0.

Let fX̌Z ∈ Γo (P(E) : R) denote the smooth R-valued function on P(E)
satisfying

LX̌Z

(
i · FAL∗

2π

)
= i∂∂fX̌Z .

Since the Futaki invariant associated with the lifting X̌Z (ofXZ) and the
Kaehler class

[
i·FAL∗

2π + k · π̌∗ωM

]
on P(E) vanishes for any sufficiently

large k ∈ N we have, for any smooth R-valued function g on P(E),∫
P(E)

(
fX̌Z + σ̂g +

σg

k
+

σ̃g

k · k
)

· S
(

oω#k
+ i∂∂ ◦ σ̂g + i∂∂ ◦ σg

k
+
i∂∂ ◦ σ̃g
k · k

)
= 0

whenever the parameter k ∈ N is large enough. Thus, by the expansion
results of Appendix I, we have, by choosing σ̂g = 0 = σg, the following

power series expansion result for
S
(
oω#k+ i∂∂◦σ̃g

k·k

)
ΩP(E)

in 1
k :

S
(
oω#k

+ i∂∂◦σ̃g
k·k

)
ΩP(E)

=
∆V
8π ◦ (−4πn · id + ∆V ) σ̃g

k · k +
known terms

k · k
+ higher order terms
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for any smooth R-valued function g on P(E) with σ̂g = 0 = σg. Hence
we infer from the vanishing of Futaki invariants:∫

P(E)

(
fX̌Z +

σ̃g

k · k
)
· S
(

oω#k
+
i∂∂ ◦ σ̃g
k · k

)
= 0

for any sufficiently large k ∈ N

that
∆V

8π
◦ (−4πn · id + ∆V ) fX̌Z = 0⇐⇒ σ̃

(
fX̌Z

)
= 0.

Similarly, by using the expansion results of Appendix I, we have, by
choosing σ̂g = 0 = σ̃g, the following power series expansion result for
S
(
oω#k+ i∂∂◦σg

k

)
ΩP(E)

in 1
k :

S
(
oω#k

+ i∂∂◦σg
k

)
ΩP(E)

=
n ·∆Mσg

k · k

+
∆V
8π [−(2πn · σg) · (2πn · σg) +Q (σg : σg)]

k · k
+
known terms

k · k + higher order terms

for any smooth section g ∈ Γ (M :W ). Thus we infer from Proposi-
tion IV.A and the vanishing of Futaki invariants:∫

P(E)

(
fX̌Z +

σg

k

)
· S
(

oω#k
+
i∂∂ ◦ σg

k

)
= 0

for any sufficiently large k ∈ N

that

∆M σ
(
fX̌Z

)
= 0⇐⇒ σ

(
fX̌Z

)
∈ Γ (M :W ) is a harmonic section.

Now we consider the isometry condition of XZ :

LXZωM = 0⇐⇒ LX̌Z
ωM = 0.

Since ∆M σ
(
fX̌Z

)
= 0 there exists a corresponding element YX̌Z ∈ gE

such that

LYX̌Z

(
i · FAL∗

2π

)
= i∂∂ ◦ σ

(
fX̌Z

)
.



curvature equations 437

(Note that YX̌Z ∈ gE is uniquely determined modulo the compact Lie

subalgebra kE of gE .) Let X̌Z ≡
(
−YX̌Z + X̌Z

)
. Then we have

LX̌Z

(
i · FAL∗

2π

)
= −LYX̌Z

(
i · FAL∗

2π

)
+ LX̌Z

(
i · FAL∗

2π

)
= i∂∂ ◦ σ̂

(
fX̌Z

)
.

We claim that ∆M σ̂
(
fX̌Z

)
= 0. To see this we note that

LX̌Z
ωM = −LYX̌Z

ωM + LX̌Z
ωM = 0 + 0 = 0

and thence

∆M σ̂
(
fX̌Z

)
2

· ΩP(E)

=

(
i·FAL∗

2π

)(−1+n)

(−1 + n)! ∧ i∂∂ ◦ σ̂
(
fX̌Z

)
∧ ω

(−1+m)
M

(−1 +m)!

=

(
i·FAL∗

2π

)(−1+n)

(−1 + n)! ∧ LX̌Z

(
i · FAL∗

2π

)
∧ ω

(−1+m)
M

(−1 +m)!

= LX̌Z


(

i·FAL∗
2π

)n
n!

∧ ω
(−1+m)
M

(−1 +m)!

 .
However, by the Einstein-Hermitian condition of A on E over M , we
have (

i·FAL∗
2π

)n
n!

∧ ω
(−1+m)
M

(−1 +m)!

=

(
i·FAL∗

2π

)(−1+n)

(−1 + n)! ∧ΠCM

(
i · FAL∗

2π

)
∧ ω

(−1+m)
M

(−1 +m)!

= −
[
ΛM trace

(
i·FA
2π

)]
n

·
(

i·FAL∗
2π

)(−1+n)

(−1 + n)! ∧ ωm
M

m!
.



438 ying-ji hong

Thus

∆M σ̂
(
fX̌Z

)
2

· ΩP(E)

= −
[
ΛM trace

(
i·FA
2π

)]
n

· LX̌Z


(

i·FAL∗
2π

)(−1+n)

(−1 + n)! ∧ ω
m
M

m!

 = 0

because

LX̌Z


(

i·FAL∗
2π

)(−1+n)

(−1 + n)! ∧ ω
m
M

m!


=

(
i·FAL∗

2π

)(−2+n)

(−2 + n)! ∧ LX̌Z

(
i · FAL∗

2π

)
∧ ω

m
M

m!

=

(
i·FAL∗

2π

)(−2+n)

(−2 + n)! ∧ i∂∂ ◦ σ̂
(
fX̌Z

)
∧ ω

m
M

m!

naturally vanishes. Hence ∆M σ̂
(
fX̌Z

)
= 0, as claimed, and so σ̂

(
fX̌Z

)
= 0. That is :

i·FAL∗
2π is invariant under the action of X̌Z = −YX̌Z +X̌Z .

q.e.d.

Appendix III. Large k behavior of LN

In this section we will investigate, for each large N ∈ N, the behavior
of the 4th order elliptic linear partial differential operator LN as the
parameter k goes to infinity. Here the 4th order (elliptic) linear partial
differential operator LN , depending on the parameter k, acting on ψ ∈
Γo (P(E) : R) is defined as follows:
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LN (ψ) = −čk · ALN (ψ) +

i∂∂
2π

(
ALN (ψ)

R
(
N
ω
#k

)
)
∧ N

ω
(−2+m+n)
#k

(−2+m+n)!

km · ΩP(E)

+

i·∂∂ log R
(
N
ω
#k

)
2π ∧ i∂∂ψ ∧ N

ω
(−3+m+n)
#k

(−3+m+n)!

km · ΩP(E)
+ BLN (ψ)

+

(
n · τNW

◦ σ (ψ)
k

+
τNVM ◦ σ̂ (ψ)

k · k

)
.

in which the 2nd order linear partial differential operators ALN and
BLN (both without the 0th order parts), acting on ψ ∈ Γo (P(E) : R),
are respectively defined as follows:

ALN (ψ) ≡
i∂∂ψ ∧ N

ω
(−2+m+n)
#k

(−2+m+n)!

km · ΩP(E)

and

BLN (ψ)

≡
i∂∂ψ ∧

[
n · i·FAL∗

2π +π̌∗trace
(

i·FA
2π

)
+π̌∗trace

(
i·FωM

2π

)]
∧ N

ω
(−3+m+n)
#k

(−3+m+n)!

km · ΩP(E)
.

Note that

R
(
Nω#k

)
=

oω
(−1+m+n)
#k

km · ω̌(−1+m+n)
+
R1

k
+
R2

k · k + higher order terms

=
ΩP(E)

ΩP(E)
+
R1

k
+
R2

k · k + higher order terms

in which

R1 =

[
−ΛM trace

(
i·FA
2π

)]
n

+
∆Mφ0

2
+
∆V σ (φ1)

2

and

R2 =

ΠCM

(
i·FAL∗

2π

)
∧ΠCM

(
i·FAL∗

2π

)
2! ∧ ω

(−2+m)
M

(−2+m)!

ΩM
+R2
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are smooth R-valued functions, independent of the parameter k, on
P(E). (More expansion results for R

(
Nω#k

)
can be found in Ap-

pendix I.) We define a symmetric operator QV (• : •) as follows:

QV (f : g) ≡
i∂∂f ∧ i∂∂g ∧

(
i·FAL∗

2π

)(−3+n)

(−3+n)! ∧ ωmM
m!

ΩP(E)

for any pair (f : g) of smooth R-valued functions on P(E). In particular
we have

QV (f : g) = Q (f : g)

when both f and g are smooth sections ofW overM . It should be noted
that QV (f : g) only depends on the fiber-directional differentiation of
f and g:

QV (f : g) = QV (σf + σ̃f : σg + σ̃g) .

Let ELN denote the 2nd order linear partial differential operator
(without the 0th order part) acting on ψ ∈ Γo (P(E) : R) defined as
follows:

ELN (ψ) ≡
i·∂∂ log R

(
N
ω
#k

)
2π ∧ i∂∂ψ ∧ N

ω
(−3+m+n)
#k

(−3+m+n)!

km · ΩP(E)
.

Then ELN depends on 1
k in the polynomial manner and we have

ELN (ψ) =
QV

(
∆V σφ1

4π : ψ
)

k
+ ELN :2 (ψ)

k · k
+ those terms of ELN (ψ) carrying higher order powers of

1
k

=
n ·QV (σφ1 : ψ)

k
+ ELN :2 (ψ)

k · k
+ those terms of ELN (ψ) carrying higher order powers of

1
k
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in which

ELN :2 (ψ)

=
i∂∂R1

2π ∧ i∂∂ψ ∧
(
i·FAL∗

2π

)(−2+n)

(−2+n)! ∧ ω
(−1+m)
M

(−1+m)!

ΩP(E)

+
i∂∂R1

2π ∧ i∂∂ψ ∧ i∂∂φ1 ∧
(
i·FAL∗

2π

)(−4+n)

(−4+n)! ∧ ωmM
m!

ΩP(E)

+
∆Mφ0

2
·QV

(
∆V σφ1

4π
: ψ
)
+
QV

2π

(
−R1 ·R1

2
+R2 : ψ

)
.

Thus

LN (ψ) = −čk · ALN (ψ) +
i∂∂ ALN (ψ)

2π ∧ N
ω

(−2+m+n)
#k

(−2+m+n)!

km · ΩP(E)
+ BLN (ψ)

+
n ·QV (σφ1 : ψ)

k
+

i∂∂
2π [−R1 · ALN (ψ)] ∧ N

ω
(−2+m+n)
#k

(−2+m+n)!

k · km · ΩP(E)

+
n · τNW

◦ σ (ψ)
k

+
τNVM ◦ σ̂ (ψ)

k · k

+
i∂∂
2π [(−R2 +R1 ·R1) · ALN (ψ)] ∧ N

ω
(−2+m+n)
#k

(−2+m+n)!

k · k · km · ΩP(E)

+ ELN :2 (ψ)
k · k

+ those terms of LN (ψ) carrying

higher order powers of
1
k
intrinsically

= −čk · ALN (ψ) +
ALN

2π
◦ ALN (ψ) + BLN (ψ)

+
n ·QV (σφ1 : ψ)

k
+

ALN
2π [−R1 · ALN (ψ)]

k

+
n · τNW

◦ σ (ψ)
k

+
τNVM ◦ σ̂ (ψ)

k · k
+

ALN
2π [(−R2 +R1 ·R1) · ALN (ψ)]

k · k + ELN :2 (ψ)
k · k

+ those terms of LN (ψ) carrying

higher order powers of
1
k
intrinsically.
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Now we note that the 2nd order linear partial differential operators
ALN and BLN both depend on 1

k in the polynomial manner. Actually
we have

ALN• = ∆V •
2

+
∆M•

2 +

[
−ΛM trace

(
i·FA
2π

)]
n · ∆V •

2

k

+
QV (σφ1 : •)

k
+

∆Mφ0

2 · ∆V •
2

k
+ ALN :2•

k · k
+ those terms of ALN • carrying higher order powers of 1

k

and

BLN (ψ) = n · (−2 + n) · ∆V ψ

2

+ n · (−1 + n) ·
∆Mψ

2 +

[
−ΛM trace

(
i·FA
2π

)]
n · ∆V ψ

2

k

+
n · (−3 + n) ·QV (σφ1 : ψ)

k
+
n · (−2 + n) · ∆Mφ0

2 · ∆V ψ
2

k

+

[
ΛM trace

(
i·FA
2π

)
+ ΛM trace

(
i·FωM

2π

)]
· ∆V ψ

2

k

+ BLN :2 (ψ)
k · k + those terms of BLN (ψ) carrying

higher order powers of
1
k

in which ALN :2 and BLN :2 are 2nd order linear partial differential oper-
ators (both without the 0th order parts), independent of the parameter
k, acting on Γo (P(E) : R). Let C-AL denote the 2nd order linear partial
differential operator acting on Γo (P(E) : R) defined as follows:

C-AL• ≡ ∆M•
2
+

[
−ΛM trace

(
i·FA
2π

)]
n

·∆V •
2
+QV (σφ1 : •)+∆Mφ0

2
·∆V •
2

so that

ALN• = ∆V •
2

+ C-AL•
k

+ ALN :2•
k · k

+ those terms of ALN • carrying higher order powers of 1
k
.
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Then (by substituting

• = [−R1 · ALN (ψ)] and • = [(−R2 +R1 ·R1) · ALN (ψ)]

respectively into the last formula for ALN•) we have

LN (ψ) = −čk · ALN (ψ) +
ALN

2π
◦ ALN (ψ) + BLN (ψ)

+
n · τNW

◦ σ (ψ)
k

+
n ·QV (σφ1 : ψ)

k

+
−∆V

4π [R1 · ALN (ψ)]
k

+
τNVM ◦ σ̂ (ψ)

k · k
+
− C-AL

2π [R1 · ALN (ψ)]
k · k +

∆V [(−R2+R1·R1)·ALN (ψ)]
4π

k · k
+ ELN :2 (ψ)

k · k + those terms of LN (ψ) carrying

higher order powers of
1
k
intrinsically

and thence (by substituting • = ALN (ψ) into the last formula for
ALN•)

LN (ψ) = −čk · ALN (ψ) +
∆V [ALN (ψ)]

4π
+ BLN (ψ) +

n · τNW
◦ σ (ψ)
k

+
n ·QV (σφ1 : ψ)

k
+

C-AL
2π ◦ ALN (ψ)

k

+
−∆V

4π

[
R1 · ∆V ψ

2

]
k

+
τNVM ◦ σ̂ (ψ)

k · k
+

ALN :2
2π ◦ ALN (ψ)

k · k +
−∆V

4π [R1 · C-ALN (ψ)]
k · k

+
− C-AL

2π

[
R1 · ∆V ψ

2

]
k · k +

∆V [(−R2+R1·R1)·∆V ψ]
8π

k · k + ELN :2 (ψ)
k · k

+ those terms of LN (ψ) carrying

higher order powers of
1
k
intrinsically

= −čk · ALN (ψ) +
∆V ◦∆V ψ

8π
+ BLN (ψ) +

n · τNW
◦ σψ

k

+
n ·QV (σφ1 : ψ)

k
+

∆V
4π ◦ C-AL (ψ)

k
+ C-AL ◦ ∆V

4π (ψ)
k
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+
−∆V

4π

[
R1 · ∆V ψ

2

]
k

+
τNVM ◦ σ̂ψ
k · k +

∆V
4π ◦ ALN :2 (ψ)

k · k
+

C-AL
2π ◦ C-AL (ψ)

k · k +
ALN :2

4π ◦∆V (ψ)
k · k +

−∆V
4π [R1 · C-AL (ψ)]

k · k

+
− C-AL

2π

[
R1 · ∆V ψ

2

]
k · k +

∆V [(−R2+R1·R1)·∆V ψ]
8π

k · k + ELN :2 (ψ)
k · k

+ those terms of LN (ψ) carrying

higher order powers of
1
k
intrinsically.

Hence by using the detailed formulae for ALN (ψ) and BLN (ψ) we have

LN (ψ) =
∆V

8π
◦ (−4πn · id + ∆V )ψ +

∆M◦∆V ψ
8π + ∆V ◦∆Mψ

8π

k

+
n · τNW

◦ σψ
k

+ ULN :1 (ψ)
k

+
LN :2 (ψ)
k · k

+ those terms of LN (ψ) carrying

higher order powers of
1
k
intrinsically

in which ULN :1 and LN :2 are the 4th order linear partial differential op-
erators (both without the 0th order parts), independent of the parameter
k, acting on Γo (P(E) : R) defined respectively as follows:

ULN :1 (ψ)
k

=
∆V
4π

(
−∆V σφ1

2 · ∆V ψ
2 +QV (σφ1 : ψ)

)
k

+
QV

(
σφ1 :

(−4πn·id+∆V )ψ
4π

)
k

+

[
−ΛM trace

(
i·FA
2π

)]
n · ∆V

8π ◦ (−4πn · id + ∆V )ψ
k

+
∆Mφ0

2 · (−4πn·id+∆V )
4π ◦ ∆V ψ

2

k
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and

LN :2 (ψ)
k · k =

τNVM ◦ σ̂ψ
k · k +

∆V
4π ◦ ALN :2 (ψ)

k · k +
C-AL
2π ◦ C-AL (ψ)

k · k
+

ALN :2
4π ◦∆V ψ

k · k +
−∆V

4π [R1 · C-AL (ψ)]
k · k

+
− C-AL

2π

[
R1 · ∆V ψ

2

]
k · k +

∆V [(−R2+R1·R1)·∆V ψ]
8π

k · k
+ ELN :2 (ψ)

k · k +
−(−1 + n) · n · ALN :2 (ψ)

k · k + BLN :2 (ψ)
k · k

+
−
[
ΛM trace

(
i·FωM

2π

)]
· C-AL (ψ)

k · k +
−čk:2 · ∆V ψ

2

k · k .

We are particularly interested in those parts of LN :2 acting nontriv-
ially on Γo (M : R). Note that

C-AL• = ∆M•
2

+ C-AL)•

in which the 2nd order linear partial differential operator

C-AL)• =
[
−ΛM trace

(
i·FA
2π

)]
n

· ∆V •
2

+QV (σφ1 : •) + ∆Mφ0

2
· ∆V •
2

has trivial action on Γ (M : R):

C-AL) (f) = 0

for any f ∈ Γ (M : R). Similarly for the 2nd order linear partial differ-
ential operators ALN :2 and BLN :2 we have

ALN :2• =
i · (∂∂)

M
• ∧ΠCM

(
i·FAL∗

2π

)
∧ ω

(−2+m)
M

(−2+m)!

ΩM
+
∆V σφ1

2
· ∆M•
2

+
i · (∂∂)

M
• ∧i∂∂φ0 ∧ ω

(−2+m)
M

(−2+m)!

ΩM
+ AL)

N :2 •
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and

BLN :2• = n · n ·
i · (∂∂)

M
• ∧ΠCM

(
i·FAL∗

2π

)
∧ ω

(−2+m)
M

(−2+m)!

ΩM

+ n · (−2 + n) · ∆V σφ1

2
· ∆M•
2

+ n · (−1 + n) ·
i · (∂∂)

M
• ∧i∂∂φ0 ∧ ω

(−2+m)
M

(−2+m)!

ΩM

+
i
(
∂∂
)
M
• ∧

[
trace

(
i·FA
2π

)
+ trace

(
i·FωM

2π

)]
∧ ω

(−2+m)
M

(−2+m)!

ΩM

+ BL)
N :2 •

in which both AL)
N :2 and BL)

N :2 act trivially on Γ (M : R):

AL)
N :2 (f) = 0 = BL)

N :2 (f)

for any f ∈ Γ (M : R). Besides we note that

ELN :2• = ∆VR1

4π
· ∆M•
2

+ EL)
N :2 •

= n · ∆V σφ1

2
· ∆M•
2

+ EL)
N :2 •

in which EL)
N :2 acts trivially on Γ (M : R). Thus

LN :2 (ψ) =
∆M ◦∆Mψ

8π
+
i
(
∂∂
)
M
ψ ∧ trace

(
i·FωM

2π

)
∧ ω

(−2+m)
M

(−2+m)!

ΩM

+
[
−ΛM trace

(
i · FωM

2π

)]
· ∆Mψ

2
+ τNVM ◦ σ̂ψ + ULN :2 (ψ)
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in which

ULN :2 (ψ)

=
∆V

4π
◦ ALN :2 (ψ) +

∆M ◦ C-AL) (ψ)
4π

+ C-AL) ◦∆Mψ

4π

+ C-AL) ◦ C-AL) (ψ)
2π

+ ALN :2

4π
◦∆V ψ +

−∆V

4π
[R1 · C-AL (ψ)]

+
− C-AL
2π

[
R1 · ∆V ψ

2

]
+
∆V [(−R2 +R1 ·R1) ·∆V ψ]

8π

+
i
(
∂∂
)
M
ψ ∧

[
n ·ΠCM

(
i·FAL∗

2π

)
+ trace

(
i·FA
2π

)]
∧ ω

(−2+m)
M

(−2+m)!

ΩM

+ [−(−1 + n) · n · AL)
N :2 (ψ) + EL)

N :2 (ψ) + BL)
N :2 (ψ)]

+
[
−ΛM trace

(
i · FωM

2π

)]
· C-AL) (ψ) +

(
−čk:2 · ∆V ψ

2

)
.

Let P#k denote the 4th order elliptic linear partial differential operator,
depending on the parameter k, acting on ψ ∈ Γo (P(E) : R) defined as
follows:

P#k (ψ)

=
∆V

8π
◦ (−4πn · id + ∆V )ψ +

∆M◦∆V ψ
8π + ∆V ◦∆Mψ

8π

k
+
n · τNW

◦ σψ
k

+
∆M◦∆Mψ

8π +
[
−ΛM trace

(
i·FωM

2π

)]
· ∆Mψ

2

k · k

+

i(∂∂)
M

ψ∧
[
trace

(
i·FωM

2π

)]
∧ω

(−2+m)
M

(−2+m)!

ΩM

k · k +
τNVM ◦ σ̂ψ
k · k .

Then we have

LN (ψ) = P#k (ψ) +
ULN :1 (ψ)

k
+ ULN :2 (ψ)

k · k
+ those terms of LN (ψ) carrying

higher order powers of
1
k
intrinsically.

We will show that LN is dominated by P#k as the parameter k is
sufficiently large. Before doing so let us look at P#k more closely. Note
that, for any ψ ∈ Γo (P(E) : R), we have

P#k (ψ) = P#k (σ̂ψ) +P#k (σψ) +P#k (σ̃ψ)
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and thence

P#k (ψ)

=
∆V

8π
◦ (−4πn · id + ∆V ) σ̃ψ +

∆M◦∆V σ̃ψ
8π + ∆V ◦∆M σ̃ψ

8π

k
+

∆M◦∆M σ̃ψ
8π

k · k

+
n ·∆Mσψ

k
+
n · τNW

◦ σψ
k

+
∆M◦∆Mσψ

8π

k · k +

(
VM
ΩM

+ τNVM

)
σ̂ψ

k · k

+

[
−ΛM trace

(
i·FωM

2π

)]
· ∆M σ̃ψ

2 +
i(∂∂)

M
σ̃ψ∧

[
trace

(
i·FωM

2π

)]
∧ω

(−2+m)
M

(−2+m)!

ΩM

k · k

+

[
−ΛM trace

(
i·FωM

2π

)]
· ∆Mσψ

2 +
i(∂∂)

M
σψ∧

[
trace

(
i·FωM

2π

)]
∧ω

(−2+m)
M

(−2+m)!

ΩM

k · k
in which VM is the infinitesimal deformation operator for the constant
scalar curvature equation on (M : ωM ). Now we set

oP#k (ψ) ≡ ∆V

8π
◦ (−4πn · id + ∆V ) σ̃ψ +

∆M◦∆V σ̃ψ
8π + ∆V ◦∆M σ̃ψ

8π

k

+
∆M◦∆M σ̃ψ

8π

k · k +
n ·∆Mσψ

k
+
n · τNW

◦ σψ
k

+
∆M◦∆Mσψ

8π

k · k +

(
VM
ΩM

+ τNVM

)
σ̂ψ

k · k
so that

− oP#k (ψ) +P#k (ψ) =

(i(∂∂)
M

σ̃ψ+i(∂∂)
M

σψ)∧
[
trace

(
i·FωM

2π

)]
∧ω

(−2+m)
M

(−2+m)!

ΩM

k · k

+

[
−ΛM trace

(
i·FωM

2π

)]
· ∆M σ̃ψ+∆Mσψ

2

k · k .

Let Č > 0 denote a sufficiently large constant independent of k (and
N ∈ N). Then it is obvious that

‖− oP#k (ψ) +P#k (ψ)‖L2(P(E):ω̌) ≤ Č ·
‖(∆M +∆V ) σ̃ψ‖L2(P(E):ω̌)

k · k
+ Č ·

‖(∆V +∆M )σψ‖L2(P(E):ω̌)

k · k .
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Let 〈 : 〉 denote the inner product on L2 (P(E) : ω̌) defined by the Her-
mitian form (metric) ω̌ on P(E):

〈f : g〉 =
∫

P(E)
f · g · ΩP(E)

∀(f : g) ∈ L2 (P(E) : ω̌)× L2 (P(E) : ω̌). Note that the decomposition

Γo (P(E) : R) = σ̂Γo (P(E) : R)⊕ σΓo (P(E) : R)⊕ σ̃Γo (P(E) : R)
of Γo (P(E) : R) is orthogonal with respect to this inner product 〈 : 〉 on
L2 (P(E) : ω̌). Moreover, by Proposition IV.C, this orthogonal decom-
position of Γo (P(E) : R) is preserved by ∆M (and ∆V ). Now, by using
the Stokes Theorem, it can be shown readily that

Č · ‖σ̃ ◦ oP#k (ψ)‖L2(P(E):ω̌)

≥
∥∥∥∥(∆V +

∆M

k

)
◦
(
∆V +

∆M

k

)
σ̃ψ

∥∥∥∥
L2(P(E):ω̌)

and

Č · ‖σ ◦ oP#k (ψ)‖L2(P(E):ω̌)

≥
∥∥∥∥(∆M + id)

k
◦
(
∆V +

∆M

k

)
σψ

∥∥∥∥
L2(P(E):ω̌)

.

Remark. Note that, on each fiber P (Cn) of π̌ : P(E) −→M , the L2

norm of ∆V σ̃ψ is always bounded by some universal multiple of the L2

norm of (−4πn · id + ∆V ) σ̃ψ. Besides we always have ∆V σψ = 4πn·σψ.
Similarly, by standard results of Partial Differential Equations or

the Stokes Theorem, we have

Č · ‖σ̂ ◦ oP#k (ψ)‖L2(P(E):ω̌) ≥
∥∥∥∥(∆M + id) ◦ (∆M + id) σ̂ψ

k · k
∥∥∥∥
L2(P(E):ω̌)

.

Thus, by the Schwarz inequality, there exists a constant C > 0, inde-
pendent of the parameter k, such that, when k is sufficiently large,

C · ‖P#k (ψ)‖L2(P(E):ω̌)≥
∥∥∥∥(∆V +

∆M

k

)
◦
(
∆V +

∆M

k

)
σ̃ψ

∥∥∥∥
L2(P(E):ω̌)

+
∥∥∥∥(∆M + id)

k
◦
(
∆V +

∆M

k

)
σψ

∥∥∥∥
L2(P(E):ω̌)

+
∥∥∥∥(∆M + id) ◦ (∆M + id) σ̂ψ

k · k
∥∥∥∥
L2(P(E):ω̌)
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is true for any ψ ∈ Γo (P(E) : R).
We can now use similar ideas to derive estimates for ‖LN (ψ)‖L2(P(E):ω̌).
Actually, by Corollary IV.A, we have

ULN :1 (ψ)
k

= ULN :1 (σψ)
k

+ ULN :1 (σ̃ψ)
k

=
∆V
4π

(
−∆V σφ1

2 · ∆V σψ
2 +QV (σφ1 : σψ)

)
k

+ ULN :1 (σ̃ψ)
k

=
σ̃ ◦ ULN :1 (σψ)

k
+ ULN :1 (σ̃ψ)

k

in which∥∥∥∥ σ̃ ◦ ULN :1 (σψ)
k

∥∥∥∥
L2(P(E):ω̌)

≤ Č ·
‖∆V ◦ (∆V + id)σψ‖L2(P(E):ω̌)

k

= C∗ ·
‖σψ‖L2(P(E):ω̌)

k

while∥∥∥∥ ULN :1 (σ̃ψ)
k

∥∥∥∥
L2(P(E):ω̌)

≤ Č ·
‖∆V ◦ (∆V + id) σ̃ψ‖L2(P(E):ω̌)

k
.

Here the constant C∗ is defined as C∗ ≡ Č · (4πn · 4πn+ 4πn). On the
other hand we have

ULN :2 (ψ)
k · k = ULN :2 (σ̂ψ)

k · k + ULN :2 (σψ + σ̃ψ)
k · k

=
σ ◦ ULN :2 (σ̂ψ)

k · k +
σ̃ ◦ ULN :2 (σ̂ψ)

k · k + ULN :2 (σψ + σ̃ψ)
k · k

because σ̂ ◦ ULN :2 (σ̂ψ) = 0. (Actually we have

ULN :2 (σ̂ψ)

=
∆V

4π
◦ ALN :2 (σ̂ψ) +

−∆V

4π

[
R1 · ∆M σ̂ψ

2

]

+
i
(
∂∂
)
M
σ̂ψ ∧

[
n ·ΠCM

(
i·FAL∗

2π

)
+ trace

(
i·FA
2π

)]
∧ ω

(−2+m)
M

(−2+m)!

ΩM
.

However the integral of the term

i
(
∂∂
)
M
ψ ∧

[
n ·ΠCM

(
i·FAL∗

2π

)
+ trace

(
i·FA
2π

)]
∧ ω

(−2+m)
M

(−2+m)!

ΩM
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along each fiber P (Cn) of π̌ : P(E) −→M simply vanishes.) Note that∥∥∥∥σ ◦ ULN :2 (σ̂ψ)
k · k

∥∥∥∥
L2(P(E):ω̌)

+
∥∥∥∥ σ̃ ◦ ULN :2 (σ̂ψ)

k · k
∥∥∥∥
L2(P(E):ω̌)

≤ Č ·
‖∆M σ̂ψ‖L2(P(E):ω̌)

k · k
while ∥∥∥∥ ULN :2 (σψ + σ̃ψ)

k · k
∥∥∥∥
L2(P(E):ω̌)

≤ Č ·
‖(∆V + id) ◦ (∆M +∆V ) (σψ + σ̃ψ)‖L2(P(E):ω̌)

k · k .

Let Ĉ ≡ 2Č · (2Č · C∗
)
and C̃ = 2Č ·

[
Č · (2Č + Ĉ)

]
. We claim that,

when the parameter k is sufficiently large, the following estimate:

2Č · ‖σ̃ ◦ LN (ψ)‖L2(P(E):ω̌) + Ĉ · ‖σ ◦ LN (ψ)‖L2(P(E):ω̌)

+ C̃ · ‖σ̂ ◦ LN (ψ)‖L2(P(E):ω̌)

≥
∥∥∥∥(∆V +

∆M

k

)
◦
(
∆V +

∆M

k

)
σ̃ψ

∥∥∥∥
L2(P(E):ω̌)

+
∥∥∥∥(∆M + id)

k
◦
(
∆V +

∆M

k

)
σψ

∥∥∥∥
L2(P(E):ω̌)

+
∥∥∥∥(∆M + id) ◦ (∆M + id) σ̂ψ

k · k
∥∥∥∥
L2(P(E):ω̌)

is valid for any ψ ∈ Γo (P(E) : R). To see this we simply note that

2Č ·
∥∥∥∥ σ̃ ◦ ULN :1 (σψ)

k

∥∥∥∥
L2(P(E):ω̌)

≤ Ĉ

2
· ‖σ ◦ oP#k (ψ)‖L2(P(E):ω̌)

while

2Č ·
∥∥∥∥ σ̃ ◦ ULN :2 (σ̂ψ)

k · k
∥∥∥∥
L2(P(E):ω̌)

+ Ĉ ·
∥∥∥∥σ ◦ ULN :2 (σ̂ψ)

k · k
∥∥∥∥
L2(P(E):ω̌)

≤ C̃

2
· ‖σ̂ ◦ oP#k (ψ)‖L2(P(E):ω̌) .

With these estimates it can be shown readily, by using the Schwarz
inequality, that our claim is true. Proposition V.B then follows imme-
diately.
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To prove Corollary V.B we simply apply (∆V +∆M ) iteratively to
LN (ψ). Since the orthogonal decomposition

Γo (P(E) : R) = σ̂Γo (P(E) : R)⊕ σΓo (P(E) : R)⊕ σ̃Γo (P(E) : R)

of Γo (P(E) : R) is preserved by ∆M (and ∆V ) we can establish Corol-
lary V.B easily through the same method as demonstrated above.
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